
The Algebra of Logic Programming

Silvija Seres

Wolfson College

Hilary Term 2001

Submitted in partial fulfilment of the requirements for the
degree of Doctor of Philosophy in Computation

�
Oxford University Computing Laboratory

Programming Research Group



Abstract

At present, the field of declarative programming is split into two main areas
based on different formalisms; namely, functional programming, which is
based on lambda calculus, and logic programming, which is based on first-
order logic. There are currently several language proposals for integrating
the expressiveness of these two models of computation. In this thesis we
work towards an integration of the methodology from the two research areas.
To this end, we propose an algebraic approach to reasoning about logic
programs, corresponding to the approach taken in functional programming.

In the first half of the thesis we develop and discuss a framework which
forms the basis for our algebraic analysis and transformation methods. The
framework is based on an embedding of definite logic programs into lazy
functional programs in Haskell, such that both the declarative and the op-
erational semantics of the logic programs are preserved.

In spite of its conciseness and apparent simplicity, the embedding proves to
have many interesting properties and it gives rise to an algebraic semantics
of logic programming. It also allows us to reason about logic programs in a
simple calculational style, using rewriting and the algebraic laws of combina-
tors. In the embedding, the meaning of a logic program arises composition-
ally from the meaning of its constituent subprograms and the combinators
that connect them.

In the second half of the thesis we explore applications of the embedding
to the algebraic transformation of logic programs. A series of examples
covers simple program derivations, where our techniques simplify some of
the current techniques. Another set of examples explores applications of
the more advanced program development techniques from the Algebra of
Programming by Bird and de Moor [18], where we expand the techniques
currently available for logic program derivation and optimisation.



To my parents, Sandor and Erzsebet.

And the end of all our exploring
Will be to arrive where we started

And know the place for the first time.
T. S. Elliot, Four Quartets



Acknowledgements

First, I would like to express a deeply felt gratitude to Mike Spivey, my su-
pervisor. Although I was a different kind of student from the ones he usually
advises, he guided me in a most friendly, competent, and patient way. The
thesis presented here is truly joint work. His guidance and encouragement
throughout the course of this thesis, and particularly during the writing-
up process, have been invaluable; his criticisms always constructive and his
logic always clear. I could not have wished for a kinder supervisor.

This thesis would not have happened without Tony Hoare’s support; I am
deeply grateful for the encouragement with which he welcomed me to Ox-
ford, for the far-sightedness with which he guided me in the early stages
of my doctoral work, and most of all for the compassion and concern with
which he helped me resolve several dilemmas regarding my future.

I would like to thank Jeremy Gibbons for the patience and cheerfulness with
which he answered my questions on algebra of programming, and Oege de
Moor and Richard Bird for their interest in my work and helpful suggestions
for looking at my results in a different way. My sincere thanks go also to
Ole-Johan Dahl and Herman Ruge Jervell, for first giving me the confidence
to apply to Oxford, and for their encouragement during my time here.

I have benefited enormously from being at the remarkable Compaq Systems
Research Centre in Palo Alto for one most enjoyable and instructive summer.
I thank all the scientists at SRC for letting me work with them, and most
of all to Greg Nelson, for showing me how excellent and uncompromising
industrial research can be. I also very much appreciated Krzysztof Apt’s
hospitability, guidance and inspiration on several occasions. A dear friend,

i



Edsger W. Dijkstra has taught me, in words and by his actions, the rôle of
work in both scientific and (not necessarily disjointly) social contexts. His
kindness was crucial for my coming to Oxford. Thank-you also to Ria and
Jill, for your friendliness and your help; both have been much appreciated.

I am especially indebted to the Research Council of Norway, for funding
my doctoral scholarship, and to the Norwegian Computing Centre and the
ORS committee for co-funding my fees. The Norwegian Computing Centre
provided for me not only financially, but also as an office-away-from-office
during my time in Norway. I would especially like to thank Ole-Henrik,
Jon, Naci and Dalip for their support regarding my doctorate. All my three
Oxford colleges – Wolfson, Oriel, and Magdalen – have helped me make the
most of my life in beautiful Oxford.

Many people have contributed less directly to the writing of this thesis, and
their support over the past three years has been very important to me. I
want to thank Ben, Paul, Christie, Yorck, and most of all Karina, for being
my good friends as well as my lab-mates, and to Shin and Rick for their
good co-operation. I will miss office 002 and its inhabitants. Thank-you to
my always supportive Comlab colleagues, my rowing crews and my Wolfson
friends as well, and particularly to Nenagh, Dave, Anne and Guilaine for
the warmth of their friendship throughout my time in Oxford.

A big thank-you goes to my much-missed family and friends at home, both
in Norway and Yugoslavia, for keeping in touch while I was away and for
making it so easy to fit back in when I visited home.

My gratitude to my husband Andreas is immense. His support – intellectual,
technical and emotional – over the last three years has enriched my thesis
and my life as well. I owe so very much to his unselfish love and patience.

Finally, I want to express my appreciation of my father Sandor, my mother
Erzsebet, my sister Gabi, and my grandmother Manci. Their letters and
phone calls cheered me up all along the way. I thank them for that constant
contact, for their interest, for their belief, and for making me feel that they
were always there for me, despite the physical distance between us.

For all this kindness and support I feel I have been truly blessed.

ii



Contents

1 Aims and Results 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 Thesis outline . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Basic Notions 9
2.1 Substitutions and unifications . . . . . . . . . . . . . . . . . . 9
2.2 Logic programming . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3 Functional programming . . . . . . . . . . . . . . . . . . . . . 19

3 The Embedding 25
3.1 Syntax of the embedding . . . . . . . . . . . . . . . . . . . . . 25
3.2 Implementation of the embedding . . . . . . . . . . . . . . . . 29
3.3 Execution example . . . . . . . . . . . . . . . . . . . . . . . . 34
3.4 Alternative search strategies . . . . . . . . . . . . . . . . . . . 37

4 Algebraic Semantics 41
4.1 Laws regarding & and ‖ . . . . . . . . . . . . . . . . . . . . . 41
4.2 Laws regarding ∃ . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.3 Laws regarding .= . . . . . . . . . . . . . . . . . . . . . . . . . 50

5 Different Search Strategies 53
5.1 Breadth-first search . . . . . . . . . . . . . . . . . . . . . . . 53
5.2 The general search model . . . . . . . . . . . . . . . . . . . . 59
5.3 Laws regarding step . . . . . . . . . . . . . . . . . . . . . . . 62

6 The Relationship Between Search Strategies 65
6.1 Three search monads . . . . . . . . . . . . . . . . . . . . . . . 65
6.2 The relationships between monads . . . . . . . . . . . . . . . 70
6.3 Initiality of the Forest monad . . . . . . . . . . . . . . . . . . 75

iii



7 Adequacy of the Embedding 80
7.1 Motivation for LD-simulation . . . . . . . . . . . . . . . . . . 80
7.2 Example of LD-simulation . . . . . . . . . . . . . . . . . . . . 82
7.3 Soundness and completeness of the embedding . . . . . . . . 87
7.4 Relation to Formulas as Programs . . . . . . . . . . . . . . . 93

8 Properties of Predicates 100
8.1 Non-recursive predicates . . . . . . . . . . . . . . . . . . . . . 100
8.2 Healthiness of recursive predicates . . . . . . . . . . . . . . . 104
8.3 Denotational semantics of predicates . . . . . . . . . . . . . . 109
8.4 Herbrand semantics of predicates . . . . . . . . . . . . . . . . 111
8.5 Uniqueness of fixpoints . . . . . . . . . . . . . . . . . . . . . . 114

9 Program Transformation 118
9.1 Algebraic program transformation . . . . . . . . . . . . . . . 118
9.2 Emulation of the unfold/fold technique . . . . . . . . . . . . . 121
9.3 Accumulator introduction . . . . . . . . . . . . . . . . . . . . 124
9.4 Generate-and-test elimination . . . . . . . . . . . . . . . . . . 128

10 Advanced Program Transformation 132
10.1 Optimisation problems . . . . . . . . . . . . . . . . . . . . . . 132
10.2 Algebraic approach to optimisation problems . . . . . . . . . 134
10.3 The three theorems . . . . . . . . . . . . . . . . . . . . . . . . 137
10.4 Dynamic programming example: string edit . . . . . . . . . . 143
10.5 Thinning example: 1/0 knapsack . . . . . . . . . . . . . . . . 145
10.6 Greedy example: minimal tardiness . . . . . . . . . . . . . . . 147

11 Evaluation and Future Work 152
11.1 Summary of the thesis and conclusions . . . . . . . . . . . . . 152
11.2 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
11.3 Functional logic programming . . . . . . . . . . . . . . . . . . 169
11.4 Further work . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

A Code for the Embedding 177
A.1 General types . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
A.2 Basic predicates and combinators . . . . . . . . . . . . . . . . 177
A.3 Integer and list modelling . . . . . . . . . . . . . . . . . . . . 178
A.4 Auxiliary functions . . . . . . . . . . . . . . . . . . . . . . . . 178
A.5 Substitutions and unification . . . . . . . . . . . . . . . . . . 179

B Code for problems from Chapter 9 181
B.1 General definitions . . . . . . . . . . . . . . . . . . . . . . . . 181
B.2 Definitions for string edit . . . . . . . . . . . . . . . . . . . . 182
B.3 Definitions for 1/0 knapsack . . . . . . . . . . . . . . . . . . . 182
B.4 Definitions for minimal tardiness . . . . . . . . . . . . . . . . 183

iv



Chapter 1

Aims and Results

In this chapter we position our work and outline the contents of the thesis.
We explain our motivation, which is to apply program transformation tech-
niques from functional programming in a logic programming setting, and we
point out the main influences. We also list the main results of the thesis.

1.1 Motivation

The most important characteristic of declarative languages is that they allow
the programmer to express programs in terms of what is to be computed,
rather than how to arrive step by step at the desired result. In theory, the
declarative programmer does not need to concern himself with particular
execution mechanisms of the language, or the underlying hardware. The
compiler or interpreter of the given language is responsible for turning the
declarative statements into sequences, or even concurrent streams, of imper-
ative commands.

In contrast to imperative programming, the execution models of declarative
programs are rooted in mathematics: program statements can be viewed as
sentences in some logic, for example, equational or Horn clause logic, and
program computation as a deduction in that logic. This mathematical basis
offers a considerable, but not yet fully realised, potential for simplification
of formal reasoning about programs and program development.

1



An important step towards popularising the declarative paradigm is to unify
the ideas, the expressiveness, and the main methodological results, from var-
ious partitions of this field. The two main groups of declarative languages are
functional and logic programming. These languages have important stylistic
differences, and traditionally they employ different programming method-
ologies regarding the specification, synthesis, transformation, debugging and
verification of programs. Research in functional programming has to a larger
extent been focused on equational reasoning, whereas in logic programming
more effort has been put into improving the efficiency of programs through
non-declarative features.

However, these differences are not as deep as they appear. In the recent
words of Robinson [115]:

It has been a source of weakness in declarative programming that
there have been two major paradigms needlessly pitted against
each other, competing in the same marketplace of ideas. The
challenge is to end the segregation and merge the two. There is
in any case, at bottom, only one idea.

The languages from different sub-paradigms of declarative programming
have different mathematical models of computation, but all of these can be
subsumed within a unified system based on narrowing. This is being success-
fully done in several major projects, including the integrated functional logic
programming languages Curry [60], Escher [78], Babel [90], Mercury [129],
and others. This research mainly focuses on unifying the expressiveness of
the two underlying programming models; however, it is also important to
unify the underlying methodology , that is, their approach to program anal-
ysis, transformation, parallelisation and programming environments. This
unification is the motivation for this thesis; we aim to explore the possibility
of a transfer of the techniques for program transformation from functional
to logic programming.

We have chosen to focus in particular on program transformation methodol-
ogy because, in spite of the similarities between the two programming styles,
their current approaches to this area are very dissimilar. The standard ap-
proaches to logic program transformation are based on transformational laws

2



which preserve the declarative semantics. However, there are several impor-
tant questions that an approach based purely on the declarative semantics
cannot answer: termination, efficiency, and therefore, the guiding of the
derivation of a more efficient program. For example, of two programs with
an equivalent declarative semantics, only one of the programs might termi-
nate under a given evaluation strategy. We contend that another approach,
based on equational reasoning as found in functional program transforma-
tion, is also appropriate for program transformation of logic programs.

The particular approach that we have taken is inspired by the following two
sources. On an abstract level, the Unifying Theories of Hoare and He [65]
use algebraic descriptions to classify and compare different programming
paradigms. Such a description consists of a set of laws, which may be used
for syntactical, rather than semantical, reasoning about programs. Such
reasoning is also much used in functional programming, so the framework of
Unifying Theories motivated our attempt to transfer some of the standard
algebraic methods used in the functional programming style over to the
other declarative style.

The second source, the Algebra of Programming of Bird and de Moor [18],
explores the problem of functional program transformation by mathemat-
ical calculation, both in order to derive individual programs and to study
programming principles (such as algorithm design) in general. They classify
many important examples of transformation as instances of more general
transformational strategies, valid for entire families of functional programs,
based on higher-order functions, and parametric in the data structures. Be-
cause of the similarity of logic and functional programming, many of the
examples from the Algebra of Programming are also well-known and have
been explored in the setting of logic programming. We were motivated to
compare the existing transformational techniques to the ones originating
from functional programming.

1.2 Methodology

The standard techniques for program transformation of functional programs
are based on algebraic reasoning: equational rewriting is used in conjunction

3



with definitions of functions and equational laws that capture the properties
of the generic recursion operators.

To help in applying this algebraic technique to the logic paradigm, we have
designed and implemented a theoretical tool in which a pure logic program
is translated into a lazy functional program, so that a logic programming
language is embedded in the functional language. This embedding can be
viewed as an executable denotational semantics for the logic program, and it
serves both as a platform and a combinator library for writing logic programs
in a functional setting.

More concretely, the embedding is an implementation of the first-order logic
operators which appear in the completed form of the logic program. Us-
ing the completed form of a logic program facilitates the use of equational
reasoning, which simplifies program transformation. It also emphasises the
similarities between the logic and functional programming paradigms. Fur-
thermore, it singles out the four basic operators (&, ‖, .= and ∃) which
are necessary for the expressiveness of pure logic programs. By focusing
on each of these separately, we gain a compositional understanding of logic
programming.

We have three consistent interpretations for the completed version of the
logic program: declarative, where the meaning of the four operators arises
from first-order logic and from a theory of equality; operational , as given by
our embedding in Haskell, where the meaning of the four operators arises
from their functional definition; and finally, algebraic, where the meaning of
the four operators arises from a set of algebraic equations. The declarative
and the operational semantics of the predicates in the embedding can be
proved consistent with the standard declarative and operational readings of
a logic program. The algebraic semantics is useful not only for program
transformation but also for a better understanding of the nature of predi-
cates as used in logic programming.

Finally, the embedding provides an expressive programming tool, since it
makes available in a single framework the most useful facets of both declar-
ative styles: namely, nested expressions, types, higher-order functions and
lazy evaluation from functional programming; and logical variables, partial
data structures and built-in search from logic programming. We argue that

4



it could well serve also for the implementation of other extensions of the
logic programming model, for example typed logic programming, constraint
programming, concurrent logic programming or higher-order logic program-
ming.

1.3 Results

Below we list the main contributions of this thesis:

Implementation of the embedding. We provide an implementation of
the embedding of pure logic programs into Haskell. The embedding
is based on atomic predicates true, false, and equality-predicates, to-
gether with the four operators &, ‖, not , and ∃. As described above,
it is a concise yet expressive tool which provides a framework for the
compositional study of logic programs; we use it in the remainder of
the thesis in for several theoretical and practical applications.

Algebraic semantics of logic programs. The relationship between the
declarative meaning of the basic operators of the embedding, and their
operational meaning that arises from LD-resolution (the standard op-
erational reading of pure Prolog programs), is imperfect. If the com-
pleted program is to have the same computational meaning as the orig-
inal logic program, only some of the usual laws of Boolean or Cylindric
Algebra should hold for these logic operators. By recognising which
properties are shared by their meanings as given by first-order logic
and by LD-resolution, we can distill the algebraic description of a logic
program.

Analysis of different search strategies. A closer inspection of the al-
gebraic laws shows that the primitive scheduling operators of logic
programming obey a rich set of laws, and that some of these laws can
be found in the categorical theory of monads. We describe implemen-
tations of three search strategies for logic programming, and present
the mathematical framework with which we explore and express the
relationships between the three models.

5



Simulation of LD-resolution. The algebraic laws for the operators of the
embedding give rise to a specification which is useful independently
from their implementation. In addition to the point above, we use this
specification to prove that the answers computed by the embedding
are the same as those computed by LD-resolution, even though the
embedding does not use LD-resolution as the computation mechanism.
The soundness and completeness of the embedding follow from this
result.

Treatment of recursive predicates. The embedding can also be used
to identify certain universal healthiness properties that all predicates
must satisfy. We use these properties to relate the embedding to the
standard declarative semantics of logic programs, and to argue that
recursive predicate definitions have unique solutions.

Equational program transformation. The algebraic laws allow the ap-
plication of two important aspects of program transformation: we may
use equational reasoning, and we may compare the computational be-
haviour of the two programs. We transfer some of the successful pro-
gram transformation techniques from functional to logic programming,
and show examples where the combination of the use of higher-order
functions and predicates results in simpler techniques and programs.

To some extent, the use of our library of functions will a give functional
programmer a small taste of the power of a functional logic language. But
current functional logic languages are much more powerful; they embody
both rewriting and resolution and thereby result in a functional language
with the capability to solve arbitrary linear constraints for the values of
variables. The list of languages that have been proposed in an attempt to
incorporate the expressive power of both functional and logic paradigms is
long and impressive [13, 59]. Our research goal is different from the one set
by these projects. They aspire to build an efficient language that can offer
programmers the most useful features of both worlds; to achieve this addi-
tional expressiveness they have to adopt somewhat complicated semantics.
Our present goal is a perspicuous declarative and operational semantics for
the embedding, rather than maximal expressiveness. Nevertheless, the ex-
tension of our embedding to incorporate both narrowing and residuation in

6



its operational semantics seems feasible and we suggest it as a subject for
our further work.

The emphasis on the similarity between the evaluation mechanisms in logic
and functional programs has several benefits. First, the compositional op-
erational semantics of a logic program in Haskell is not only a useful the-
oretical tool for logic programmers, it also gives functional programmers
easy access to understanding the operational semantics of logic programs.
Second, bringing the two programming styles into a common setting en-
courages a transfer of methods between the two. For example, higher-order
techniques are readily available, and because of the similarities between
functional programs and logic programs in the embedding, it is obvious that
these techniques are necessary for capturing general program transformation
and derivation techniques. Finally, this approach has potential for a simple
implementation of an efficient functional logic programming language, even
including parallelism and constraints “for free”.

Some material from this thesis has been published in refereed conferences
and journals. The embedding and the algebraic laws have been described
in [134] and [121], and the analysis of different search strategies has been
published [123] and [133]. The techniques and examples involving general
program transformation were discussed in [122], and the advanced transfor-
mation techniques were presented in [120].

1.4 Thesis outline

The rest of this thesis is organised as follows:

In Chapter 2 we describe the relevant background material, including an
overview of logic and functional programming.

In Chapter 3 we describe an embedding of logic programming in Haskell.
We present an execution example and discuss how the embedding can be
altered to encompass different search strategies.

In Chapter 4 we describe the algebraic laws for each of the four basic oper-
ators of the embedding.

7



In Chapter 5 we give two alternative implementations of the embedding, one
corresponding to a breadth-first search model of logic programming, and one
to a model which permits any search strategy.

In Chapter 6 we present a categorical analysis of the three resulting search
models, presenting structure preserving maps between them, and proving
that the list of laws from Chapter 4 is in a sense complete.

In Chapter 7 we prove that the embedding, and consequently the derived
algebraic semantics, is correct with respect to LD-resolution, the usual pro-
cedural reading of logic programming languages.

In Chapter 8 we explore the algebraic properties of predicates and the deno-
tational semantics of recursively defined predicates. We show that, in any
fair model of the embedding, all definable recursive predicates have a unique
fixpoint.

In Chapter 9 we show how the algebraic laws can be used for transformation
of logic program. The examples deal with the emulation of the standard
unfold/fold technique, accumulating parameters and the improvement of
generate-and-test based programs.

In Chapter 10 we show how the approach used in Chapter 9 can be applied to
optimisation problems: we derive efficient algorithms for problems of string
edit, minimal tardiness and 0-1 knapsack.

In Chapter 11 we present our conclusions and compare our work to the main
results in related areas. Finally, we point out directions for further research.

For completeness, we present the full code for the embedding in Appendix A,
the code for the examples from Chapter 10 in Appendix B.

8



Chapter 2

Basic Notions

This chapter outlines the basic concepts from logic and functional program-
ming that are used in this thesis; it sketches the main ideas of functional
logic programming, and concludes with a comparison of these paradigms.

2.1 Substitutions and unifications

We begin by defining the set T (F,X) of terms. The set F = {f1, f2, . . . } con-
tains function symbols, each with a given arity. We require that F contains
at least one constant. A countably infinite set X = {x1, x2, . . . } contains
variables. Then T (F,X) denotes the set of all terms {t1, t2 . . . } built from
F and X in the following inductive manner:

• a variable xi is a term,

• if fi is a n-ary term and t1, . . . , tn are terms,
then fi(t1, . . . , tn) is a term.

Var(t) denotes the set of variables occuring in a term t. A ground term is a
term t without variables, that is, such that Var(t) = {}.

A substitution is a function from variable symbols to terms in which all but a
finite number of variable symbols are mapped to themselves. Substitutions

9



can therefore be presented as a finite set of variable/term pairs:

{x1/t1, . . . , xn/tn},

in which the xi are distinct variable symbols and no ti is the same as the
corresponding xi. A pair xi/ti is called a binding for xi.

Given a substitution {x1/t1, . . . , xn/tn}, the set {x1, . . . , xn} is called the
domain of the substitution. If X is a set of variables, θ|X denotes the
substitution obtained by the restriction of the domain of θ to the set X.
If n = 0 the substitution is called an empty substitution, and is denoted
by ε. A substitution that is a 1-1 and maps its domain to another set of
variables, is called a renaming . Two substitutions are equal if they are equal
as functions; equivalently, they are equal if they have the same domain and
act in the same way on each element of this domain.

A substitution σ can be extended to a function from terms to terms, where
a term is mapped into a term obtained from t and σ by simultaneously
replacing in t every variable which has a binding in σ with the corresponding
term defined by the binding. Thus the obtained term is denoted as tσ and
is called an instance of t. If σ is a renaming, then tσ is called a variant of t.

The composition of two substitutions uniquely identifies a substitution. If
σ and θ are substitutions and x a variable, then their composition, denoted
σθ, is defined by:

(σθ)(x) = (σ(x))θ,

and consequently, for any term t, composition satisfies (tσ)θ = t(σθ). Com-
position is associative, that is, (σθ)η = σ(θη). Furthermore, the empty
substitution ε is a left and right identity. Thus substitutions form a monoid
under composition.

A substitution σ is more general than another substitution θ, or σ subsumes
θ, if there exists a substitution η such that θ = ση; we write σ � θ. Later
we shall operate on sets of substitutions, and we will need a subsumption
ordering for them as well: given two sets of substitutions S and S′, we say
that S subsumes S′ (written S�∗S

′) iff for every σ′ ∈ S′ there exists a more

10



general σ ∈ S:

S �∗ S
′ ⇔ (∀σ′ ∈ S′.(∃σ ∈ S. σ � σ′)).

A unifier of two terms t1 and t2 is a substitution σ such that t1σ = t2σ. A
pair of terms may have no unifier or several, but if they do have a unifier,
then it can be shown that there exists a unique (up to variable renaming)
most general unifier , abbreviated as mgu. Given two terms, if σ is any unifier
and µ is their mgu, then σ � µ. The most general unifier µ subsumes every
other unifier σ, and it can be though of as a substitution which makes two
terms equal without any unnecessary bindings. An mgu µ of two terms
is strong if for any unifier σ of these terms, σ = µσ holds. In particular,
µ = µµ.

The problem of determining whether two terms are unifiable is solved by
providing an algorithm that terminates with failure if the terms are not
unifiable, and that otherwise produces one of their most general unifiers, in
fact a strong one. The first unification algorithm is due to Robinson [113];
another well-known unification algorithm is by Martelli and Montanari [83],
and we present this one because it suits our framework better. It is this
basic unification algorithm that we shall be using in our implementation. It
works on unifying a finite set of pairs of terms, written as a set of equations:

{t1 = t′1, . . . , tn = t′n}.

A unifier for this set makes each equation true. The algorithm chooses non-
deterministically an equation from the set of equations below and performs
the associated action. We stress that xi stands for a variable.

(1) fi(t1, . . . , tn) = fi(t′1, . . . , t
′
n) Replace by t1 = t′1, . . . , tn = t′n.

(2) fi(t1, . . . , tn) = fj(t′1, . . . , t
′
m), Halt with failure.

where i �= j

(3) xi = xi Delete the equation.
(4) ti = xi, where ti is not a variable Replace by equation xi = ti.
(5) xi = tj, where tj is not a variable Perform the substitution {xi/tj}

and xi does not occur in tj on all other equations.
(6) xi = tj where xi ∈ Var(tj), Halt with failure.

and xi �= tj

11



This algorithm terminates when no action can be performed or when failure
arises. In case of success, by changing in the final set of equations = to /,
we obtain the desired mgu. The unification of other syntactic constructions,
such as atoms, is based on this unification algorithm for terms.

This and the next section are compiled and adapted from a tutorial by Apt
in [4] (for the most part) and the books by Apt, Lloyd and Spivey [2, 76, 131].

2.2 Logic programming

Let R = {r1, r2, . . . } be a set of relation symbols with given arities, including
the predefined constant relations true and false. Then A = {p1, p2, . . . }
denotes the set of atomic formulae, or simply atoms, where a pi is defined as
a n-ary relation from R applied to an n-tuple of terms from T (F,X), that
is, ri(t1, . . . , tn).

A query , denoted as qi, is a finite sequence p1, . . . , pn of atoms. A clause,
denoted as ci, is a construct pi ← qi. A logic program, denoted as P , is a
finite set of clauses.

A query p1, . . . , pn is interpreted as the conjunction of all the literals within
it, and the empty query is equivalent to true and traditionally denoted by �.
A clause pi ← qi is interpreted as an implication from qi to pi, where the
atom pi is referred to as the head and the query qi as the body of the clause.
A clause pi ← with an empty body is called a unit clause, and its meaning
is that pi holds unconditionally.

Given a program P , we regard the set of all clauses that mention the relation
r in their heads as the definition of r in P . For example, let the relation
append(x1, x2, x3) mean that x1 appended with x2 results in the list x3. Let
[ ] stand for the empty list and [x|y] for the list containing x as the head and
y as the tail. Then the predicate append can be defined by the following
two clauses:

append([ ], x1, x1)← .

append([x1|x2], x3, [x1|x4])← append(x2, x3, x4).

12



The clauses as defined as above are usually called definite clauses, while in
general clauses may allow more than one atom in the head of the clause. In
this thesis we consider only definite clauses.

All the variables occuring in a clause are implicitly governed by a universal
quantifier. Equivalently, we may say that those variables that occur in the
body but not in the head are governed by an implicit existential quantifi-
cation whose scope is the body. We extend Var to also denote the set of
variables for the syntactic constructions defined in this section.

To execute a logic program one has to give it an initial query p1, ..., pn. The
standard computational mechanism, SLD-resolution, finds instances of a
query p1, ..., pn such that all of p1σ, ..., pnσ are implied by the program, thus
providing a constructive proof of (∃�x. p1∧. . .∧pn). This is often explained by
saying that SLD-resolution proves that the clause false← p1, ..., pn is incon-
sistent with the program, in the sense that the clause false ← is derivable.
This proof technique is referred to as proof by refutation.

For example, the query append([1], y, [1, 2]) results in one answer {y/[2]},
while the query append(x, [2], z) results in an infinite list of answer substi-
tutions {x/[ ], z/[2]}, {(x/[x1], z/[x1, 2])}, . . . The basic step of this compu-
tation is an SLD-resolution step −→

SLD
as defined below.

Queries are always executed relative to some input substitution; initially,
this substitution is ε. In standard descriptions of SLD-resolution, the input
substitution is implicit and is automatically applied to the variables of the
query. On the other hand, in our functional presentation of the embedding,
as in the description of Apt in [4], these substitutions are explicit. Given a
query q and a substitution θ, we denote by the pair 〈q; θ〉 the query q in the
environment θ, that is, the variables of q interpreted as in θ. We assume
that, if q is non-empty, one atom is selected in it. Consider a program P .
We define the relation 〈q; θ〉 −→

SLD
〈q′; θ′〉 as follows:

Consider a pair 〈q1, p, q3; θ〉, with p the selected atom, and a clause c from P .
Let h← q2 be a variant of c, variable disjoint with 〈q1, p, q3; θ〉, that is, such
that:

Var(h← q2) ∩ (Var(q1, p, q3) ∪Var(θ)) = ∅.

13



Suppose that pθ and h unify with the mgu η. Then the pair 〈q1, q2, q3; θη〉
is the SLD-resolvent of 〈q1, p, q3; θ〉 and c, and we write :

〈q1, p, q3; θ〉 −→
SLD
〈q1, q2, q3; θη〉.

We obtain SLD-derivations by repeating the −→
SLD

steps. An SLD-derivation
of a query q in program P is a maximal sequence of pairs 〈qi; θi〉 such that
i ≥ 0 and for all j ≥ 0 we have 〈qj ; θj〉 −→

SLD
〈qj+1; θj+1〉.

And SLD-resolution is called successful if it is finite and the query in the
last pair is empty, and it is called failed if it is finite and the query in the
last pair is non-empty. If we derive 〈q; ε〉−→

SLD

∗〈�; τ〉, we call qτ a computed
instance of q with respect to P , and we call τ |Var(q) a computed answer
substitution for q with respect to P .

In Chapter 7 we prove the adequacy of our embedding, and a crucial part
of this argument is based on the correctness of SLD-resolution. To be more
precise about “correctness” here, we need to be formal about the meaning
of our syntactic entities such as terms and relations.

The meaning of terms arises from an algebra. Given a language of terms
T (F,X), an algebra J for T (F,X) consist of a non-empty domain D and an
assignment to each n-ary function symbol f in F a mapping fJ from Dn to
D. A state ρ over the domain D assigns to each variable x an element from
D and and to each non-variable term t an element ρ(t) from D, defined by
induction:

ρ(f(t1, . . . , tn)) = fJ(ρ(t1), . . . , ρ(tn)).

The meaning of relation symbols arises from an interpretation. Given a set of
relations based on T (F,X) and a set of relation symbols R, an interpretation
I extends an algebra J by an assignment, for each n-ary relation symbol r
in R, of a subset rI of Dn.

Given an interpretation I, the relation �ρ between an interpretation I and
an atom, query or clause formalises our earlier informal description of their
meaning. If r(t1, . . . , tn) is an atom, then I �ρ r(t1, . . . , tn) iff (ρ(t1), . . . , ρ(tn)) ∈
rI . If p1, . . . , pn is a query, then I �ρ p1, . . . , pn iff I �ρ pi for all i ∈ [1, n].

14



If pi ← qi is a clause, then I �ρ pi ← qi iff I �ρ qi ⇒ I �ρ pi. Finally, if
c1, . . . , cn is program, then I �ρ c1, . . . , cn iff I �ρ ci for all i ∈ [1, n].

Models are used to define the concept of a logical consequence, and conse-
quently, the declarative notion of an answer. Let E denote an atom, clause
or query. If for all states ρ we have I �ρ E, then we write I � E. Such an
interpretation I gives every ground instance of the expression E the value
true, and it is called a model for E. Given a program P and a query q, we
say that q is a semantic consequence of P , written P � q, if every model
of P is also a model of q. Which brings us to the declarative counterpart
of a computed answer: if P � qθ, then θ|Var(q) is called a correct answer
substitution of q and qθ is called a correct instance of q.

The following two theorems justify the use of SLD-resolution, and later also
the use of our embedding:

Theorem 2.1

SLD-resolution is sound: Consider a program P and a query q. Then, every
computed instance of q is a correct instance of q.

Theorem 2.2

SLD-resolution is complete: Consider a program P and a query q. For every
correct instance of q, there exists a computed instance of q that is equal or
more general.

In Chapter 8 we relate our embedding to the standard declarative reading
of logic programs, and one particular type of interpretations is central for
this reading and for SLD-resolution. Resolution is fundamentally based on
unification, and this choice is motivated by the syntactically-based concept
of Herbrand models. For a ground expression E, a Herbrand model is an
interpretation H, such that the domain DH of H consists of all ground
atoms p(t1, . . . , tn), where each ti denotes a ground term constructed using
the constants and function symbols in E, and the state ρ of H assigns a
truth value to some subset of this domain, such that the expression E is
true. For any non-ground E, a ground instantiation G(E) is obtained by
replacing all variables in E by terms from DH , and any Herbrand model of
G(E) is also a Herbrand model of E.

15



Given a program P , most Herbrand models of P are larger than strictly
necessary to satisfy P , but the set of all these models has a unique least
element called the Least Herbrand Model, HP , which is the intersection of
all the Herbrand models of P . This is the intended interpretation of a logic
program, and is taken to be its declarative meaning. It can be shown that
HP is precisely the set of ground queries that succeed by resolution with the
clauses of P .

Thus, resolution uses the idea of unification to guide the choice of substitu-
tions for universally quantified variables, and finds all the instances of the
query which are in the Least Herbrand Model of the program. The unifia-
bility requirement acts as an implicit filter for the selection of the relevant
instances, and moreover represents its selection very economically through
the device of the mgu.

In Chapter 7 we shall need the concept of an SLD-tree, which is a tree
with the query at the root, depicting a computation from that root, with
subsequent resolvents as adjacent nodes. Each edge in an SLD-tree signifies
a resolution step, and the tree contains enough information to determine
exactly which answers, if any, are computed in response to the root node.
Different selection rules determine different SLD-trees, but all those trees
agree upon the computed answer set; this property is customarily referred
to as the independence of the selection rule.

An SLD-tree will typically contain a number of branches and hence a number
of distinct computations, making the execution process non-deterministic,
and hence giving rise to a need for a search strategy. In Chapter 5 we analyse
the different search strategies which determine the manner of the exploration
of the SLD-tree. The standard search strategy, used by Prolog, is top-down,
depth-first search (dfs) with backtracking. This strategy is not guaranteed
to produce every correct answer in a finite time; in particular, in case of
infinitely deep search trees the exploration of an infinite branch will defer
indefinitely the exploration of some alternative capable of yielding a correct
answer. In contrast, breadth-first search (bfs) would in all cases ensure
effective completeness in that every correct answer would be discovered after
some finite time, but can then continue to explore the infinite branches
indefinitely. However, if the search tree is finite, dfs is optimal in memory

16



utilisation while ensuring completeness.

As we show later on, our embedding is parametric in the search rule. We
have three implementations that share the same algebraic properties, where
one traverses the SLD-tree in a depth-first manner, using backtracking, an-
other that traverses it in a breadth-first manner, and a third one that can
traverse the tree using any given search strategy. However, we are not able
to vary the selection rule. All the implementations use the left-most selection
rule, the same one as used by Prolog. Following Apt in [2], we refer to this
computational model as LD-resolution, standing for SLD-resolution with
the leftmost selection rule. To emphasise this restriction, we use the corre-
sponding terminology throughout the thesis: by an LD-resolvent , LD-tree,
LD-resolution and LD-derivation we mean respectively an SLD-resolvent,
an SLD-tree, an SLD-resolution and an SLD-derivation with respect to the
leftmost selection rule.

Computation in pure Prolog is obtained by imposing certain restrictions on
the SLD-resolution for the sake of efficiency; the fixed selection rule is one of
these restrictions. Another restriction, which we also set in our embedding,
is that the clauses are tried in the order in which they appear in the program
text, so the program is viewed as a sequence of clauses rather than a set.

Because Prolog always uses depth-first search, the computation of a Prolog
program does not necessarily correspond to an LD-tree. The Prolog tree
of a logic program is a subtree of the LD-tree which consists of the nodes
that will be generated by the depth-first search; that is, all the branches
to the right of the first infinite branch are pruned out. As we show later,
our depth-first model of the embedding corresponds to the Prolog-tree of
the corresponding program. The other two models correspond to the LD-
tree of the same program. Since a Prolog tree of a program is a subset
of its LD-tree, in the rest of the thesis we will for simplicity consider LD-
trees, and mention explicitly when some branches become unreachable due
to depth-first search.

The concept of predicates plays a central role in this thesis, and our use
of this term differs from the standard nomenclature of Prolog. In Prolog
terminology, “predicate” is synonymous with “relation symbol”, and “defi-
nition” of a predicate r is the set of all clauses in a program that have r in

17



their heads. In Prolog, as in logic programming, the syntactic notion of a
definition, in its own right, does not have an attributed meaning. In our set-
ting, a “definition” is used as a composite function, where the components
correspond to the basic constructs of Prolog, and these functions behave
as semantic objects that we can analyse and reason about . In our search
for a name, we found the word “definition” too vague and has a syntactic
connotation; the term “atom” misleading, because our relation definitions
are not necessarily atomic; the term “query” unsatisfactory, because, even
though in our equational setting, a definition is semantically equivalent to a
“query”, this term implies a call to evaluation, while we want to emphasise
the compositional meaning of these objects.

In the end, for a lack of a better word, we have decided to settle for the
word “predicate”, which we use as the Haskell object, a function, which is
the result of an embedding of a Prolog definition in Haskell. It is the meaning
of such predicates, both operational, compositional and denotational, that
this thesis concerns itself with, and the applications of these semantics. We
also use the word “relation” to mean a Haskell function which expects a
tuple of terms, and returns a predicate as defined above. We return to this
discussion in the next chapter.

Our embedding can also compute a restricted version of negation: we allow
predicates in a query to be negated, but only guarantee correct behaviour
if they are ground. Computationally, we implement this as “finite failure”,
which is an extension of LD-resolution that enables one to express, via a call
not p, that all attempts to prove p shall fail in a finite time. The reason for
restricting the computation to ground negation is that with the standard
LD-resolution, negation can lead to unsoundness when it appears in non-
ground queries; in addition, it results in incompleteness when applied to
activated non-ground calls.

For the sake of efficiency and the ease of programming, Prolog has several
features that do not correspond with the declarative nature of logic program-
ming. Negation is one of these features; there are other, such as cut , assert ,
and retract . In this thesis we do not deal with such non-declarative features,
although an embedding of such features in a functional setting might well
constitute a topic for our future investigation. Since there is no scope for

18



confusion, by “Prolog” we shall henceforth mean “pure Prolog”.

However, as discussed earlier, we do not restrict the search strategy to depth-
first search, so we do not only embed pure Prolog, but a general pure logic
programming language that computes by means of LD-resolution. It is an
interesting point that the embedding can be made parametric in the search
rule without major changes, but not in the selection rule. The reason for
this is that any non-leftmost variation of the selection rule would need to
alter the stack-like discipline that our embedding obeys. It would involve a
more complex interaction between the conjuncts of predicates, so some sort
of AND-parallelism would be needed. This is an area for our further work,
and could possibly be connected to the work of McPhee in [85].

2.3 Functional programming

We now proceed to describe the basic concepts from pure functional pro-
gramming that are crucial for understanding of our embedding and equa-
tional proofs. However, some knowledge of lazy functional programming
is assumed throughout the thesis, and for additional reading the reader is
referred to [17] by Bird.

A functional program is a collection of function definitions. Such definitions
are often expressed as a set of guarded recursion equations, each defining a
relationship between inputs and outputs. For example, the Haskell program
that corresponds to the predicate append from the previous section is:

append [ ] xs = xs

append (x : xs) ys = x : (append xs ys)

Functional application associates to the left, so append xs ys is equivalent to
(append xs) ys. The definition above is curried , so the two arguments can
be provided one at a time, each time resulting in a function requiring one less
argument. Lists are constructed from the constructor [ ], representing the
empty list, and constructor (:), representing the addition of an element to
the front of the list. The syntax [1, 2, 3] is used to denote the list 1 : 2 : 3 : [ ].

19



The composition of two functions f and g is denoted by f · g and defined as:

(f · g) x = f (g x).

Functions like (·) which are written using infix notation are called operators.
Composition is an associative function. It is also a higher-order function,
because it takes functions as its input, and returns a new function as its
result. Higher-order functions are extremely useful for capturing “patterns”
of computation, and we base our implementation and program transforma-
tion on their use. They have the effect of removing the recursion from a
program, and replace reasoning by induction with equational reasoning.

Haskell has strong typing : the only expressions regarded as well-formed are
those that can be assigned a type, according to a certain discipline. Such
typing is useful for our embedding: the types are associated with operations,
and they give us much assistance in error detection and it steers us into a
certain discipline of thought.

An expression in a functional program is evaluated by reducing it to its
simplest equivalent form according to the rewrite rules given by the function
definitions of the program. If it cannot be reduced further, the expression is
in a canonical or normal form. For some well-typed expressions, the process
of reduction may never stop; for example, the Integer typed expression
infinity :

infinity = infinity + 1,

never produces an answer, that is, it is not clear what value it corresponds
to. Such expressions are identified with a special value ⊥, denoting the
undefined value of any type. In a lazy functional language, an application of
a function to an expression of value ⊥ does not necessarily result in another
undefined value. This result depend on the strictness of the given function
in the argument where ⊥ appears. A function f is strict if f ⊥ = ⊥. When
a function returns ⊥, we shall also say that it diverges. For example, given
a function multiply :

multiply (x, y) = if x == 0 then 0 else x ∗ y,

20



in the expression multiply (0, infinity) has value 0, while multiply (infinity, 0)
has value ⊥, that is, this computation diverges. Lazy functional languages
also allow computation on infinite data structures, such as infinite lists, trees
etc. For example, the form [1..] is a Haskell shorthand for the infinite list of
all consecutive integers starting from 1. Finally, lazy functional programs
may also operate on partial lists, such as the list 1 : 2 : 3 : ⊥. In fact, the
infinite list [1..] may be viewed as the limit of the infinite sequence of partial
lists:

⊥, 1 : ⊥, 1 : 2 : ⊥, 1 : 2 : 3 : ⊥, . . .

The declarative meaning of functional programs is typically given by some
version of (typed or untyped) λ-calculus, which is then given a denota-
tional semantics. The two most important ways of reducing expressions
in λ-calculus are applicative-order and normal-order evaluation. The first
one will evaluate all the argument expressions before they are passed to the
function’s body, while the second passes the argument expressions uneval-
uated into the function, and delays the evaluation until they are required.
The implementation of the second strategy, where graph-reduction is used
to ensure that each expression is evaluated at most once, is referred to as
lazy evaluation. Under lazy evaluation a function f might return a value
even though some of its arguments cause an error or fail to terminate. If a
function has a head normal form, it will be found under lazy evaluation, and
the evaluation will require no more (and possibly fewer) steps than eager
evaluation.

The program transformation technique used in chapters 9 and 10 depends
on the principle of referential transparency: an expression can always be
substituted for its value everywhere that it occurs. Any equality that holds
in the program can be used in this manner. The principle of extensionality
means that two functions are equal if they give equal results for equal argu-
ments. By appealing to extensionality, we can prove that f = g by proving
that fx = gx for all x. Depending on the definition of f and g, sometimes
we may prove f = g directly. The two techniques are called pointwise and
point-free styles of proof, and both will appear in this thesis.

The higher-order function map applies a unary function to each element

21



of a list. This function is polymorphic, as it accepts a list of any type as
input; the only constraint is that the type of the input function and the list
elements must agree. If the polymorphic list type is denoted by [a], and a

and b denote type variables, the type of map is:

map :: (a→ b)→ [a]→ [b].

The function map has a number of useful algebraic identities. The first
two laws below (2.1, 2.2) express the fact that it is a functor, and they are
consequently called functor laws. The function concat concatenates a list
of lists into one long list, and the third law (2.3) expresses the fact that
concat is a natural transformation. It is called the naturality condition for
concat . The fourth law (2.4) is an instance of the book-keeping law. These
point-free laws will be used in our program transformation proofs later.

map id = id , (2.1)

map(f · g) = (map f ) · (map g), (2.2)

map f · concat = concat ·map (map f ), (2.3)

concat · concat = concat ·map concat . (2.4)

The first laws (2.1) states that applying the identity function of every el-
ement of the list leaves the list unchanged. The second law states that
applying g to each element of a list, and consequently applying f to each
element of the result, is the same as applying f · g to the input list. Law
(2.3) says that one can either concatenate a list of lists and apply f to each
element of the result, or apply map to every sub-list and then concatenate
the result. Law (2.4) says that flattening a list of lists of lists into one long
list can be done by concatenation inside-out or outside-in.

Many recursive functions on lists can be defined in terms of foldr . This
higher-order function applies a binary function to a list in a right-associative
manner, reducing the list to a single value:

foldr :: (a → b → b)→ b → [a]→ b

foldr f e [ ] = e (2.5)

foldr f e (x : xs) = f x (foldr f e xs) (2.6)

22



There exists also an alternative fold operator, foldl , which groups the paren-
theses from the left. There exist three duality theorems which clarify the
relationship between foldr and foldl , giving conditions under which one may
be replaced by the other; we only list the first and the simplest one. Given
an associative binary operator ⊕ with unit e, and a finite list xs, we have:

foldr (⊕) e xs = foldl (⊕) e xs. (2.7)

The fold-fusion theorems (2.8) and (2.9) deal respectively with foldr and
foldl . These two theorems have several important corollaries which are much
used in program transformation. They hold under the following conditions:
given functions f and g and terms a and b, such that f is strict, f a = b,
and respectively, for all x and y:

f (g x y) = h x (f y) and f (g x y) = h (f x) y.

If these conditions are satisfied, we have:

f · foldr g xs = foldr h ys, (2.8)

f · foldl g xs = foldl h ys. (2.9)

These laws turn out to be essential transformation rules in program devel-
opment. The patterns in these laws about folds over lists are patterns which
stress the similarities with other type constructors, such as binary trees and
their operations, rather than what is special to lists. Our embedding makes
it simple to apply laws like these in a logic programming setting, since we
can use them without having to worry about higher-order unification and
other closely related matters.

We shall also make use of list comprehension notation for Haskell. It takes
the form [e|Q], where e is an expression and Q is a qualifier, which is a
possibly empty sequence of generators and guards, separated by commas. A
generator takes the form x← xs, where x is a variable or a tuple of variables
and xs is a list-valued expression. A guard is a boolean-valued expression.

Finally, we shall need to operate on a particular notion of a state in our
embedding. In next chapter we show how to translate, in a compositional
manner, predicate definitions from pure Prolog into functions in Haskell.

23



This composition allows us to express, among others, a conjunction of two
predicates. In this case, predicate functions need to be evaluated relative
to the result of a predicate which proceeds them in the conjunction. This
result, or the state, or the environment of the computation, is represented
as a substitution, and it is the input to which the given predicate is applied.
The result of the function application is a collection of new, alternative,
environments which are consistent with the input substitutions, and which
satisfy the original predicate. The predicate functions thus behave as purely
functional state transformers.

24



Chapter 3

The Embedding

In this chapter we describe a simple framework for a compositional trans-
lation, or embedding, of logic programs into functional ones. We also show
an execution example, and begin an analysis of different search strategies.

3.1 Syntax of the embedding

As described in Chapter 1, the embedding that is the core of this thesis
is compositional; this makes it very different in nature from the standard
interpreters of logic programs in a functional setting. In an interpreter, logic
programs are represented as closed syntactic objects, and the representation
of the input program is an element of a free datatype, subject to analysis
by pattern matching and recursion. However, the evaluation of the program
does not necessarily proceed by recursion over the structure of this datatype
– it may involve a computation of the resolvents, which are not compositional
parts of the input program.

In our embedding, each definition in the object logic program becomes a
separate entity in Haskell, rather than one monolithic value. The Haskell
entities corresponding to definitions of the logic program are called pred-
icates, and as we show later, they are implemented as functions. These
functions can be combined by higher-order combinators, which correspond
to the basic constructs from the logic program. So, a predicate is built in-

25



ductively from other predicates using the basic combinators. One can say
that the compositional approach yields the recursive evaluation in the em-
bedding, and it also yields a compositional, that is, denotational, semantics
of the original logic program.

In the proposed embedding of pure Prolog into a lazy functional language,
we aim to give rules that allow any Prolog predicate to be translated into
a function with the same meaning. To this end, we introduce two data
types Term and Predicate into our functional language, together with the
following four operations:

(&), (‖) : Predicate→ Predicate→ Predicate,

( .=) : Term→ Term→ Predicate,

exists : (Term→ Predicate)→ Predicate,

where the Term argument of exists always holds a variable. The intention
is that the operators & and ‖ denote conjunction and disjunction of pred-
icates, .= forms a predicate expressing the equality of two terms, and the
operation exists expresses existential quantification. In terms of logic pro-
grams, we will use & to join literals of a clause, ‖ to join bodies of clauses,
.= to express the primitive unification operation, and exists to introduce
fresh local variables in a clause. We shall often abbreviate the expression
exists (λx. r x) by the form (∃x. r x) in this thesis, although the longer
form shows how the expression can be written in any lazy functional lan-
guage that has λ-expressions. We shall also write (∃x1, x2. r(x1, x2)) for
(∃x1. (∃x2. r(x1, x2))).

The four operations &, ‖, .=, and exists suffice to translate any pure logic
program, provided we are prepared to exchange pattern matching for explicit
equations, to bind local variables with explicit quantifiers, and to gather all
the clauses defining a predicate into a single equation. These steps can be
carried out systematically, and could easily be automated. The result is that
the implicational form of the original logic program is replaced an equational
form, such that each relation definition from the logic program becomes a
function definition in Haskell.

This transformation is a well known technique in logic programming. It is

26



called the completion process of predicates, and was first proposed in 1987
by Clark [26] in order to deal with the semantics of negation in definite
logic programs. Using the same process, Clark translates logic programs to
first-order formulas, while we translate them to Haskell functions. Given
an appropriate equality theory, it can be shown that this process preserves
the atomic consequences for the original predicate, that is, its declarative
reading. The syntactic differences are minimal, and simply a matter of
Haskell syntax; the interesting difference is that, by having an underlying
operational semantics of equational term-rewriting, we may also express
and emphasise the operational semantics of the syntactic entities that this
translation introduces in Haskell; namely, the combinators &, ‖, .=, and ∃.

Clark’s completion of a logic program P consists of an application of the
following five steps. Here xi denotes a fresh variable, x̄ and ȳ denote variable
sequences, and true, false, ∧, ∨, ∃ and ↔ denote the standard first-order
logic primitives and operators, while F stands for a first-order formula. For
each relation r in the program P :

1. Remove patterns from heads: replace each clause r(t1, . . . , tn)← q in
P by the formula r(x1, . . . , xn)← x1 = t1 ∧ . . . xn = tn ∧ q.

2. Quantify local variables: replace each formula r(x̄) ← q obtained in
the previous step by r(x̄)← ∃ȳ. q, where ȳ is the sequence of variables
that occur in q but not in x̄; that is, the list of variables from the
original clause.

3. Introduce explicit disjunction: replace all formulas r(x̄) ← F1, . . . ,
r(x̄) ← Fn obtained in the previous step, such that have the relation
r on the left hand side, with the single formula r(x̄)← F1 ∨ . . . ∨ Fn.
If F1 ∨ . . . ∨ Fn is empty, replace it by true.

4. Introduce explicit failure: add a formula r(x̄)←false for each relation
r not appearing in the head of any clause in P .

5. Replace implications by equivalences: replace each formula r(x̄)← F

with ∀x̄. (r(x̄)↔ F ).

According to Clark, this first-order logic predicate is equivalent to the set
of substitutions, represented in an equational form, computed by SLD-
resolution for the original logic program. In a sense, Clark represents the

27



SLD-tree for the original logic program in a first-order logic form. However,
the standard logic operators which he introduces in the process do not have
the same operational behaviour as their implicit counterpart from logic pro-
gramming. The left-to-right selection rule and the top-down sequencing of
clauses do not agree with the commutativity of ∧ and ∨; the computation
of answers, both in Prolog and in our embedding, does not return a set but
some implementable representation of it, such as a sequence. Therefore,
we loose additional Boolean properties, such as the left distributivity of ∧
through ∨, and so on. These differences are discussed in detail in Chapter 4.

To arrive at an embedding in Haskell, we need to translate and implement
the syntax of first-order logic in Haskell. We introduce six new functions:
&, ‖, .=, ∃, true and false, and use them to replace, respectively, ∧, ∨, =, ∃,
true and false. We take care to implement them in such a way that their
behaviour corresponds to LD-resolution, in a compositional way.

We also need to represent Prolog terms, such as lists, in Haskell. For type
technical reasons discussed later, we cannot simply use terms in Haskell.
So, we use nil for the value of type Term that represents the empty list,
and we write cons for the function on terms that corresponds to the Prolog
list constructor [ | ]. We assume the following order of precedence on the
operators, from highest to lowest: .=,&, ‖, ∃.

As an example, we take the well-known program for append :

append([ ], c, c).

append([a|b], d, [a|c])← append(b, d, c).

As a first step, we perform homogenisation: we remove any patterns and
repeated variables from the head of each clause, replacing them by explicit
equations written at the start of the body. These equations are computed
by unification in Prolog.

append(x, y, z)← x = [ ], y = z.

append(x, y, z)← x = [a|b], z = [a|c], append(b, y, c).

Now the head of each clause contains only a list of distinct variables, and
renaming can ensure that these lists of variables are the same in every clause.

28



Further steps of the translation consist of joining the clause bodies with the
‖ operator and the literals in a clause with the & operator, existentially
quantifying any variables that appear in the body but not in the head of a
clause, and using our notation for lists:

append(x, y, z) = (3.1)

(x .= [ ] & y
.= z)

‖ (∃a, b, c. x .= [a|b]) & z
.= [a|c] & append(b, y, c)).

The function append defined by this recursive equation has the type:

append :: (Term,Term,Term)→ Predicate.

Although we have shown how the translation from Prolog to Haskell can be
carried out in a way that preserves syntactic well-formedness – so that, given
operators with the appropriate types, we obtain a valid Haskell program –
we have given no implementation of these operators. Also, despite the fact
that we can superficially read the Haskell program as a logical formula, with
a meaning equivalent to the original program, we have done nothing so far
to ensure that the Haskell program (read as a Haskell program) has any
semantic relation to the Prolog program.

However, the relationship between the Prolog predicate and the Haskell
function extends beyond their declarative semantics. The next section con-
tends that the procedural reading of the Prolog predicate is also preserved
through the implementation of the functions & and ‖.

3.2 Implementation of the embedding

Before we begin describing the implementation, we stress once again that
our implementation is not the same as building an interpreter. We do not
extend the base functional language; rather, we implement in the language a
set of functions designed to support unification, resolution and search. Also,
this is a simple and necessarily inefficient implementation; in Chapter 11 we
briefly consider the prospects for a more efficient implementation.

29



It should also be stressed that the implementation presented in this section
is just one of the several possible implementations of &, ‖, .= and ∃ such that
the declarative and procedure reading of the corresponding logic program
are preserved. This is the implementation that conforms to the depth-first
search of Prolog. Later, we shall be able to give alternative definitions that
correspond to breadth-first search, or other search strategies based on the
search tree of the program.

We now proceed to give definitions to the type of predicates and to the four
basic operations. The key idea is that each predicate is a function that takes
an answer , representing the state of knowledge about the values of variables
at the time the predicate is solved, and produces a lazy stream of answers,
each corresponding to a solution of the predicate that is consistent with the
input. This approach is similar to that taken by Wadler [141] and by Jones
and Mycroft [70]. An unsatisfiable query results in an empty stream, and a
query with infinitely many answers results in an infinite stream.1

type Predicate = Answer → Stream Answer .

An answer is (in principle) just a substitution. However, it will be necessary
in the implementation of exists to generate fresh variables not in used before
in the computation. We provide for this by augmenting the substitution with
a counter that tracks the number of variables that have been used so far,
so that a fresh variable can be generated at any stage by incrementing the
counter.

A substitution is represented as a list of (variable, term) pairs:

type Answer = (Subst , Int),

type Subst = List (Var ,Term),

where the data-type Term is a straightforward implementation of Prolog’s
term type, and the data-type Var is a disjunctive union of user provided
variable names, which are strings, and automatically generated variables,

1For clarity, we use the type constructor Stream to denote possibly infinite streams,
and List to denote finite lists. In a lazy functional language, these two concepts share the
same implementation.

30



which are represented by integers:

data Term = Func Fname (List Term) | Var Vname,

type Fname = String ,

data Vname = Name String | Auto Int .

The explicit use of the constructor List in the definition of Func above
highlights that all these structures are intended to be finite; they are also
meant to be total. Constants are functions with arity 0, in other words they
are given empty argument lists.

For example, the Prolog list [a, b] can be represented in the embedding as
Func “cons” [Func “a” [ ], Func “cons” [. . . ] ]. With the use of the simple
auxiliary functions cons, atom and nil the same list can be written more
conveniently as the expression cons (atom “a”) (cons (atom “b”) nil) in
Haskell. In our examples, we shall further shorten this to read just [a, b],
and abbreviate variables Var(Name “x”) as x and Var(Auto i) as vi.

Returning to the type of the function append , when provided with the fol-
lowing triple of terms, the function call:

append([1], [2], x)

returns a Predicate. This, in turn, is a function which expects an answer,
and returns a stream of answers. The usual initial Answer is a pair consist-
ing simply of the empty substitution and the zero variable counter, ([ ], 0).
When applied to this argument, the predicate above returns the same set of
solutions, the singleton {x/[1, 2]}, as would the corresponding Prolog query.

We can now give definitions for the four operators. The operators & and
‖ act as predicate combinators. The ‖ operator simply concatenates the
streams of answers returned by its two operands:

(‖) :: Predicate→ Predicate→ Predicate

(p1 ‖ p2) x = p1 x++ p2 x. (3.2)

This definition implies that the answers are returned in a left-to-right order
as in Prolog. If the left-hand argument of ‖ is unsuccessful and returns an

31



empty answer stream, it corresponds to a finite but unsuccessful branch of
the search tree in Prolog and backtracking is simulated by evaluating the
right-hand argument.

For the & operator, we start the evaluation of p1 & p2 by applying the
predicate p1 to the incoming answer; this produces a stream of answers,
to each of which we apply the predicate p2. Finally, we concatenate the
resulting stream of streams into a single stream:

(&) :: Predicate→ Predicate→ Predicate

p1 & p2 = concat ·map p2 · p1. (3.3)

Because of Haskell’s lazy evaluation, the function p1 returns answers only
when they are needed by the function p2. This corresponds with the back-
tracking behaviour of Prolog, where the predicate p1 & p2 is implemented
by enumerating the answers of p1 one at a time and filtering them with
the predicate p2. Infinite lists of answers in Prolog are again modelled with
infinite streams.

We can also define primitive predicates true and false, one corresponding to
immediate success and the other to immediate failure:

true :: Predicate false :: Predicate

true x = [x]. false x = [ ]. (3.4)

The pattern matching of Prolog is implemented by the operator .=. It is de-
fined in terms of a function unify which implements the standard algorithm
for a unification of two terms, as described in Chapter 2, relative to a given
input substitution. The type of unify is:

unify :: Subst→ (Term,Term)→ List Subst.

The use of List in the return type of unify accounts for the fact that the
unification might fail. More precisely, the result of unify σ (t1, t2) is either
[µ], where µ is a strong mgu of t1 and t2 with respect to σ, that is, µ = ση

where η = mgu(t1σ, t2σ), or unify σ (t1, t2) = [ ] if t1σ and t2σ are not
unifiable. The coding of unify is otherwise routine and therefore omitted
here, but can be found in Appendix A.

32



The .= operator is just a wrapper around unify that passes on the counter for
fresh variables. It is implemented by means of a list comprehension, comput-
ing the list of all (s′, n), where s′ is produced by the generator unify s (t1, t2):

( .=) :: Term→ Term→ Predicate

(t1
.= t2) (s, n) = [(s′, n) | s′ ← unify s (t1, t2)] (3.5)

We shall call predicates which are built only using the .= operator equations.

As stated before, the predicate (∃x. r x) is our shorthand notation for the
Haskell term exists(λx. r x). The function exists is responsible for allocating
fresh names for all the local (or existentially quantified) variables in the
predicates. This is necessary in order to guarantee that the computed answer
is the most general result. It is defined as the following higher-order function:

exists :: (Term→ Predicate)→ Predicate

exists lp (s, n) = lp (makevar n) (s, n+ 1), (3.6)

where makevar n returns a term representing the n’th generated variable:
Var (Auto n). For example, the result of makevar 6 is Var (Auto 6), which
we shall henceforth abbreviate to v6.

The slightly convoluted flow of information in the implementation of exists
may be clarified by a small example. The argument lp of exists will be a
function that expects a variable, such as (λx→ append(t1, x, t2)). We apply
this function to a newly-invented variable vn = makevar n to obtain the
predicate append(t1, vn, t2), and finally apply this predicate to the answer
(s, n+ 1), in which all variables up to the n’th are marked as used.

Finally, the function solve evaluates the main query. It simply applies its
argument p, the predicate of the query, to the initial answer ([ ], 0), and
converts the resulting stream of answers to a stream of strings, containing
only the input variables:

solve :: Predicate → Stream String

solve p = map print (p ([ ], 0 )) (3.7)

where print is a function that converts an answer to a string, pruning it to

33



show only the values of named variables Name x from the query. This is
the point where all the internally generated variables are filtered out in our
present implementation. It may appear that a possibly cleaner solution is
to let the ∃ operator do this filtering task before it returns. However, we
can not do this in general, because local variables might be needed in the
final answer, for example in under-determined predicate calls. This problem
is discussed in detail in Section 4.2.

The operators presented so far are the “core” operators of the embedding.
One can go further, in allowing a predicate operator not , which mimics
finite-failure negation:

not :: Predicate→ Predicate

not p (σ, n) = [(σ, n)], if p(σ, n) = [ ] (3.8)

= [ ], otherwise.

We discuss negation further in Chapter 7. Now we proceed to clarify the
computation of the embedding through a simple example.

3.3 Execution example

As described, queries in the embedding are solved by the function solve,
yielding a stream of solutions. The lazy evaluation of Haskell ensures that
these solutions are computed and printed one at a time. Take for example:

solve (append (a, b, [1, 2, 3])),

where, as stated before, the term x abbreviates Var(Name x), the list [x, y]
abbreviates cons(x, cons(y, nil)), and a numeral such as 1 stands for the
term Func “1” [ ]. We shall also use [x|xs] as shorthand for cons(x, xs), and
[ ] as shorthand for the empty list nil.

The computation commences by solve providing the default answer ([ ], 0).

The predicate append(x, y, z) is defined by two branches joined by ‖. Since
the operator ‖ in the depth-first model computes as a concatenation of two

34



lazy streams, the system will evaluate, in turn, each of the ‖ branches on
the input ([ ], 0):

append (a, b, [1, 2, 3]) ([ ], 0)

= (a .= nil & b
.= [1, 2, 3]) ([ ], 0)

++ (∃x, y, z. a .= [x|y] & [1, 2, 3] .= [x|y] & append(y, b, z)) ([ ], 0)).

We now look at each of these two branches in turn.

In the first branch, the & operator is applied next. By the definition of &,
map applies the equation b

.= [1, 2, 3], to each of the answers in the stream
resulting from the computation of the equation a .= nil on the given input.

Expressed as a rewriting, the computation is as follows:

concat (map (b .= [1, 2, 3]) ((a .= nil) ([ ], 0)) )

= concat (map (b .= [1, 2, 3]) [([(a,nil)], 0)] )

= concat [(b .= [1, 2, 3]) ([(a,nil)], 0)]

= concat [[([(a,nil), (b, [1, 2, 3])], 0)]]

= [([(a,nil), (b, [1, 2, 3])], 0)].

In this rewriting, first the .= operator unifies the variable a with the constant
nil , relative to the empty input substitution [ ], resulting in the singleton
answer list [([a/nil], 0)]. Then, map applies the equation b .= [1, 2, 3] to the
only element of this list, resulting in the singleton [[([a/nil, b/[1, 2, 3]], 0)]].
This result is next flattened by concat .

Because of laziness, in the computation of map p2 (p1(σ)), the answers in
the stream p1(σ) are returned in response to map needing a next element
to compute on. When p1 is an equation, as in the computation above, map
only gets a finite list as an input; but in other examples p1(σ) may well
compute an infinite stream, in which case map computes ad infinitum.

The first element in the stream returned by append is thus computed. Fi-
nally, the lazy evaluation of solve filters out the input variables a and b in
the composed substitution and prints the first answer: {a/nil, b/[1, 2, 3]}.

With this, the first branch of ‖ terminates, and the computation of the

35



second branch of append(a, b, [1, 2, 3]) begins:

(∃x, y, z. a .= [x|y] & [1, 2, 3] .= [x|z] & append(y, b, z)) ([ ], 0).

The ∃ operator (which here is a shorthand for three consecutive applications
of ∃) produces three fresh automatic variables v0, v1, v2, and we get:

(a .= [v0|v1] & [1, 2, 3] .= [v0|v2] & append(v1, b, v2)) ([ ], 3),

where the last part of the input pair indicates that three variables have
been generated so far. The first two predicates in this conjunction are
equations, and thus have only single solutions, respectively {a/[v0|v1]} and
{v0/1, v2/[2, 3]}. These solutions are computed in a few steps similar to the
ones described before, and after composing the substitution for v0, we arrive
to a new call to append , as given below:

append(v1, b, v2) ([a/[1, v1], v0/1, v2/[2, 3]], 3). (∗)

This call to append again rewrites to two ‖ branches; the first one is:

(v1
.= nil & b

.= v2) ([a/[1, v1], v0/1, v2/[2, 3]], 3)

After a few more steps the substitution components v1/nil and b/[2, 3] are
added to the state, and the second answer, containing the combined sub-
stitution values for a and b, is returned: {a/[1], b/[2, 3]}. The remaining
two answers, {a/[1, 2], b/[2, 3]}, and {a/[1, 2, 3], b = [ ]}, follow in a similar
manner from further expansion of the second ‖ branch of the call (∗).

At some later point in the computation, the .= operator fails to find any
unifier relative to the input substitution. It then returns the empty stream,
and since it is a part of an & expression, the empty stream will be input to
map and concat , so they terminate. Finally, since this is the last part of the
topmost ‖ branch, the ++ performed by the outermost ‖ also terminates,
and so does solve.

In Chapter 7 we show that the operators .=, ∃, & and ‖ behave in a way
that actually simulates the effect of LD-resolution. This result rests on the
algebraic properties of the operators that we present in Chapter 4.

36



3.4 Alternative search strategies

Our implementation of ‖, together with the laziness of Haskell, causes the
search for answers to behave like a depth-first search in Prolog: when com-
puting p1 x ++ p2 x, all the answers corresponding to the p1 x part of the
search tree are returned before the other part is explored. Similarly, our im-
plementation of &, through the fact that in p1 & p2 the answers returned by
p1 become the input of p2, reflects the left-to-right selection rule of Prolog.

An interesting question arises about how much our implementation would
need to change to accommodate other search strategies or selection rules.
At this stage we have deliberately chosen to simulate Prolog, so neither our
search strategy nor our selection rule are fair; a fair search strategy would
share the computation effort more evenly between the two branches of the
computation of ‖, and a fair selection rule would allow one to chose the
literals in a different order. In this section we demonstrate that a fair search
strategy can be achieved with minimal re-coding, but explain why a fair
selection rule would require much more extensive changes to our system.

Regarding varying the search strategy, one possible solution (suggested by
McPhee and de Moor in [86]) is to interleave the streams of answers to
‖, taking one answer from each stream in turn. A function twiddle that
interleaves two lists can be defined as follows:

twiddle :: [a]→ [a]→ [a]

twiddle [ ] ys = ys

twiddle (x : xs) ys = x : (twiddle ys xs).

The operators ‖ and & can be redefined by replacing ++ with twiddle and
recalling that concat = foldr (++) [ ]:

(p1 ‖ p2) x = twiddle (p1 x) (p2 x)

(p1 & p2) x = foldr twiddle [ ] ·map p2 · p1.

This implementation of & produces in a finite time solutions of p2 that are
based on later solutions σ2, σ3, . . . returned by p1, even if the first such
solution σ1 produces an infinite stream of answers from p2. Laziness is

37



important here in ensuring that at each stage no more work is devoted to
solving p2(σi) for some input answer σi than is needed to produce the next
answer. Thus even if p2(σ1) produces an infinite stream of answers, effort
can move between computing successive elements of other streams p2(σi).
On the other hand, the original implementation of & produces all solutions
of p2 that are based on the first solution σ1 produced by p1 before producing
any that are based on the second solution σ2 from p1.

Note that this implementation of operators does not give breadth-first search
of the search tree; it deals with infinite success but not with infinite failure.
Even in the interleaved implementation, the first element of the answer list
has to be computed before we can switch branches; if this takes an infinite
number of steps the other branch will never be reached.

To implement breadth-first search in the embedding, the Predicate data-
type needs to be changed. It is no longer adequate to return a single, flat
stream of answers; this model is not refined enough to take into account the
number of computation steps needed to produce a single answer. That is, we
obtain just the answers, with no indication of what they cost to compute.
Worse still, an infinitely failed computation has value ⊥, and can never be
distinguished from a computation that will produce answers in the future.

In a model that does contain information about the cost of each answer, the
key idea is to let Predicate return a stream of lists of answers, where each
list represents the answers reached at the same level of the search tree. The
lists of answers with the same cost are always finite since in a finite program
there is only a finite number of nodes at each level of the search tree.

In this model, each successive list of answers in the stream contains the
answers with the same computational “cost”. The cost of an answer in-
creases with every resolution step in its computation. This can be captured
by adding a new function step in the definition of predicates, where step is
used as a wrapper around each function definition. For example:

append(x, y, z) =

step ((x .= [ ] & y
.= z)

‖ (∃a, b, c. x .= [a|b] & z
.= [a|c] & append(b, y, c))).

38



The only change is the application of step to the whole right-hand side.

In the depth-first model, step is the identity function on predicates, but in
the breadth-first model it is defined as follows:

step :: Predicate→ Predicate

step p x = [ ] : (p x). (3.9)

Thus, in the stream returned by step p, there are no answers of cost 0, and
for each n, the answers of step p with cost n+1 are the same as the answers
of p that have cost n. This is recorded by the fact that they are elements
of the (n+ 1)’st list in the answer stream to the query step p. Further, the
implementations of the Predicate combinators ‖ and & need to be changed
so that they no longer operate on streams but on streams of lists. They
must preserve the cost information that is embedded in the input lists.

To implement both depth-first search and breadth-first search in the embed-
ding, the model has to be further refined. It is not sufficient to implement
predicates as functions returning streams of answer lists; they have to oper-
ate on lists of trees. Again, the implementation of operators ‖ and &, and
of the function step, needs to be adjusted to the new type of predicates. We
postpone the presentation of these two models, and the definitions involved,
to Chapter 5.

In spite of the changes to Predicate type, the implementations of the op-
erators ‖ and & in each of the three models remains strikingly concise and
similar. Their closely parallel definitions hint at a deeper algebraic struc-
ture, and in fact the definitions are all instances of the so-called Kleisli con-
struction from category theory. Even greater similarities between the three
models exist, and we give a more detailed study of the relation between the
three in Chapter 6.

Concerning varying the selection rule, much greater changes are required. As
noted above, laziness of Haskell and the implementation of & enforce a left-
to-right selection discipline. To override this, we would need a sophisticated
interaction between the two conjuncts corresponding to AND-parallelism.
Referring to Kowalski’s formula “logic programming = logic + control”, it
is interesting that the search element of control is so much more susceptible

39



to varying than the selection element. This is because ‖ parallelism requires
no communication between processes, unlike & parallelism.

We now defer the discussion about the search models until later, and turn
our attention to the algebraic properties of the operators described in this
chapter. These properties are important, because our goal is to reason about
logic programs written in our embedding, using properties of operators that
are shared by all alternative definitions of the operators, not one single set of
definitions. Also, an important aspect of algebraic program transformation
is its compositional nature, and the algebraic properties of the operators are
a vital part of this compositionality.

40



Chapter 4

Algebraic Semantics

The operators &, ‖, .= and ∃ enjoy many algebraic properties as a conse-
quence of their definitions. This chapter lists a number of common laws and
proves their validity for the embedding. It lists only those laws that are valid
for both predicate calculus and for our embedding. The laws presented here
are expressed as equations, and by equations we mean extensional equality
between Haskell programs; in other words, these equalities mean that given
the same input, the two programs return the same output.

4.1 Laws regarding & and ‖

One of the strengths of the embedding is that all the algebraic properties
of the operators are simple to prove, using equational reasoning. The laws
follow directly from definition of the operators and from the standard proper-
ties of Haskell’s list operators ++, map, concat , and functional composition.
Most of these standard properties are listed in Chapter 2 as laws (2.1–2.4),
and the remaining ones can be found in standard texts on functional pro-
gramming, for example, in [17] by Bird.

There is an abstract approach to proving some of the properties listed here,
through the use of category theory. Given our implementation, it is a well
known fact that map, concat and true form a structure that category theory
calls a monad, in particular the Stream monad. The composition operator

41



& can be obtained from this monad by a standard construction called Kleisli
composition. Consequently, & must be associative with unit element true.

However, here we wish to show that these properties of the logic program-
ming primitives & and true, and several others regarding also ‖ and false,
can be proved with no reference to category theory. As an example, we can
prove the associativity of & by the following point-free rewriting:

(p1 & p2) & p3

= concat ·map p3 · concat ·map p2 · p1 by defn. of &

= concat · concat ·map (map p3) ·map p2 · p1 by (2.3)

= concat ·map concat ·map (map p3) ·map p2 · p1 by (2.4)

= concat ·map (concat ·map p3 · p2) · p1 by (2.2)

= p1 & (p2 & p3). by defn. of &

The proofs of the following properties are at least as elementary as this. The
predicate false is a left zero for &, false & p = false. However, this operator
is strict in its left argument, so false is not a right zero. If p(σ) = ⊥, we get:

(p& false)(σ)

= concat (map false p(σ)) by defn. of &

= concat (map false ⊥) since p(σ) = ⊥
= concat ⊥ map strict

= ⊥ concat strict

This corresponds to the feature of Prolog that false & p has the same be-
haviour as false, but p& false may fail infinitely if p does.

Further, owing to the properties of ++ and [ ], the ‖ operator is associative
and has false as a left and right identity. For example:

(p1 ‖ false)(σ)

= p1(σ) ++ false(σ) by defn. of ‖
= p1(σ) ++ [ ] by defn. of false

= p1(σ) by defn. of ++

42



Other identities that are satisfied by the connectives of propositional logic
are not shared by our operators because, in our stream-based implementa-
tion, answers are produced in a definite order and with definite multiplicity.
This behaviour mirrors the operational behaviour of Prolog. For example,
the ‖ operator is not idempotent, because true ‖ true produces its input
answer twice as an output, but true itself produces only one answer. The &

operator also fails to be idempotent, because the predicate

(true ‖ true) & (true ‖ true)

produces the same answer four times rather than just twice. We might also
expect for & to distribute over ‖ from the left, that is,

p1 & (p2 ‖ p3) = (p1 & p2) ‖ (p1 & p3),

but this is not the case. For a counterexample, take for p1 the predicate
x
.= a ‖ x .= b, for p2 the predicate y .= c, and for p3 the predicate y .= d.

Then the left-hand side of the above equation produces the four answers
{x/a, y/c}; {x/a, y/d}; {x/b, y/c}; {x/b, y/d} in that order, but the right-
hand side produces the same answers in the order {x/a, y/c}; {x/b, y/c};
{x/a, y/d}; {x/b, y/d}. However, as proved in Chapter 7 for law 7.1, this
property is true when p1 is determinate, that is, when it returns at most
one answer.

On the other hand, the other distributive law,

(p1 ‖ p2) & p3 = (p1 & p3) ‖ (p2 & p3),

does hold, and it is vitally important to the unfolding steps of program
transformation. The simple proof depends on the fact that both map r and
concat are homomorphisms with respect to ++:

((p1 ‖ p2) & p3) σ

= concat (map p3 (p1 σ ++ p2 σ)) by defn. of ‖, &

= concat (map p3 (p1 σ) ++ map p3 (p2 σ)) map/++

= concat (map p3 (p1 σ)) ++ concat (map p3 (p2 σ)) concat/++

= ((p1 & p3) ‖ (p2 & p3)) σ. by defn. of &

43



It might be seen as a weakness of our approach based on the implementation
of the embedding that these properties must be expressed in terms of the
weak notion of a predicate definable in terms of our operators, when an
interpreter for Prolog written in Haskell would allow us to formulate and
prove them as an inductive property of program texts. We believe that this
is a price well worth paying for the simplicity and the clear declarative and
operational semantics of our embedding.

In summary, the algebraic laws regarding the operators & and ‖ cover the
part of the embedding that has to do with searching:

(p1 & p2) & p3 = p1 & (p2 & p3), (4.1)

p& true = true & p = p, (4.2)

false & p = false, (4.3)

(p1 ‖ p2) ‖ p3 = p1 ‖ (p2 ‖ p3), (4.4)

p ‖ false = false ‖ p = p, (4.5)

(p1 ‖ p2) & p3 = (p1 & p3) ‖ (p2 & p3). (4.6)

It is worth noting that the laws that are absent from the list tell us as much
about the computational side of logic programming as the ones present:
the & and ‖ encountered here and in standard logic programming have
a declarative reading in terms of conjunction and disjunction in predicate
logic, but there are significant differences between the algebraic properties
of our operators and those of the corresponding operators in logic. Another
interesting aspect of this list of laws is that it can be proved to be complete,
in the sense that all the search models, as formally defined in Chapters 5 and
6, will share exactly these six algebraic laws regarding & and ‖. We return
to this proof in Chapter 5, and now we consider the algebraic properties of
the remaining operators.

4.2 Laws regarding ∃

The algebraic properties of ∃ are important for program transformation be-
cause they allow local variables to be introduced and eliminated. As before,
we wish these laws to preserve operational equivalence between predicates,

44



that is, equality between the streams of answers that are returned. Unfor-
tunately, in its strict sense such equality does not permit some desirable
laws for ∃, such as the reordering of the bound variables in (∃x, y. r(x, y))
and (∃y, x. r(x, y)), because the variables generated during execution of the
two programs would be named differently, and these names may appear in
answer substitutions.

To avoid referring to equality “up to variable renaming”, we will assume
that, upon termination, each ∃ predicate transforms its answers into a stan-
dard form in which the irrelevant differences in local variables are neu-
tralised. Below we outline such a transformation, to show that it is im-
plementable; however, since the differences are only a minor syntactic issue
and we do not wish to complicate the formalities of proofs about our im-
plementation unnecessarily, we choose not to use this standardisation in our
implementation.

It may appear that the simplest solution would be to let each ∃, after its
termination, remove the variable that it introduces. The reason that we can
not do this is that some invented variables might appear in the final answer.

Since equality of substitutions is extensional, the substitution components
may be combined, and the ordering in which the substitutions occur in the
answer is irrelevant. This is the main idea behind the standard form of an
answer: to rename the local variables in a consistent manner which does not
affect the value of the substitution.

To simplify the description of this standardisation of answers, we shall once
more resort to the append example. Let us consider the predicate call
append([1|a], b, c) ([ ], 0). According to the definition of append (3.1), and
by the same reasoning as presented in Chapter 3, this call will eventually
rewrite, among others, to the call:

(∃x, y, z.(v1 .= [x|y] & v2
.= [x|z] & append(y, b, z)) (∗)

([(a, v1), (c, [v0|v2]), (v0, 1)], 3).

We now consider a computation of one answer to this ∃ predicate (actually,
three nested ∃ predicates), and describe one possible strategy for a stan-
dardisation of these answers. According to its definition, the ∃ in (∗) inserts

45



fresh variables v3, v4 and v5 for the bound x, y and z. After some more
rewriting, the first answer to (∗) is returned:

{v0/1, a/[v3|nil], c/[1|[v3|v5]], v1/[v3|nil], v2/[v3|v5], v4/nil, b/v5}.

We now want to compute the standard form of this answer. The question,
then, is which variables may be renamed? The names of the global variables,
such as a, must remain unchanged. Some local variables, produced by an
outer ∃, such as v0, v1 and v2, are relevant for further computation, because
they may appear in still unresolved predicates, so they can not change either.
That leaves for renaming only the variables introduced by the terminated ∃
calls – that is, v3, v4, and v5, in this case.

One possible strategy for renaming involves the use of a separate alphabet
for variable names that can be changed. For example, this alphabet may
consist of names wi, where the indices i are kept “compact” and for each
new wi, i will be the next unused index for w’s. Renaming v3, v4, and v5 to
w0, w1, and w2, we get:

{v0/1, a/[w0|nil], c/[1|[w0|w2]], v1/[w0|nil], v2/[w0|w2], w1/nil, b/w2}.

In any answer all variables must appear either with a single occurrence in the
domain, or they occur one or more times in the range of the substitution.
If a wi appears in the domain, it is not needed in the answer, and it may
be removed. The remaining bindings (xj , tj) can be arranged according to
an ordering on the variables xj . Because we are using strong mgu’s, this
ordering will be unique for all equivalent answers. Then, all the indexes i to
the wi are reshuffled so that the first occurrence of each wi variable happens
in an increasing order of i’s, and the later occurrences of wi are renamed
consistently with the first one. This results in a standard form of the answer.
Returning to our example, the standard form of the answer above is:

{a/[w0|nil], b/w1, c/[1|[w0|w1]], v0/1, v1/[w0|nil], v2/[w0|w1]}

As it happens, in our example this answer is not used in further computation,
so the bindings for v0,v1 and v2 are not used, but other examples could have
more conjuncts after append in (∗), which might refer to v0, v1 and v2.

46



We now proceed to list the laws for ∃; they allow us to identify the con-
ditions under which we can eliminate or rename the bound variables in
predicates. If the standardisation is performed, all the laws listed below
preserve operational equivalence. Their proofs are based on properties of
Haskell’s λ-expressions and on our implementation of ∃.

We have previously introduced the expression (∃x. p) as a shorthand for the
Haskell expression exists(λx. p), where the function exists simply provides
a fresh variable name and applies the λ-expression to it. This notation
is convenient for writing embedded predicates and their transformations.
However, for the proofs of ∃ properties, the λ-notation in Haskell and the
language rules provide a concise framework. Therefore, in this section we
will reason about the laws in Haskell notation, and at the end of this section
we list the laws in the shorthand notation which we use in the rest of the
thesis.

One more notational comment: in the laws below, we sometimes need to
express that some variable x appears in predicate p; we can use our conven-
tion for denoting relations with r and write r x for such p. As before, our
relation r will typically be written as a Haskell λ-abstraction.

We can always consistently rename the bound variables in predicates, simply
because bound variables can be renamed in Haskell, and exists is just a
wrapper around a Haskell λ-expression. So, we have:

exists(λx. r x) = exists(λy. r y). (4.7)

For example, in an expression exists(λx. r x), the expression r can be in-
stantiated to λw. append(w, [3], [2, 3]). Then we know that exists(λx. r x)
rewrites to exists(λx. append(x, [3], [2, 3])), where x appears in the bound
predicate. By the same reasoning, the right hand side of the equation would
rewrite to exists(λy. append(y, [3], [2, 3])). These two expressions are equiv-
alent in Haskell.

The equation (4.7) does not say anything specific about the behaviour of
the ∃ operator in the embedding, since it holds for any λ-expression. The
remaining laws depend on the properties of the ∃ operator as we have imple-
mented it. For example, the law (4.8) states that the function exists applied

47



to a constant function yields the same constant:

exists(λx. p& r x) = p& exists(λx. r x). (4.8)

In program transformation this equation is used to remove from the scope
of ∃ any parts of the predicate that do not mention the bound variable;
these parts would typically already have been used in combination with the
Leibnitz rule (4.28) or the rule for substitutions of equals for equals (4.12)
to pass the parameters. The proof is trivial. Let x′ denote the fresh variable
name that exists supplies; we then have:

exists(λx. (p& r x))

= (λx. p& r x) x′ by (3.6)

= p& r x′ β-reduction

= p& exists(λx. r x). by (3.6)

The proofs of the following two equations are similar. Equation (4.9) is used
to eliminate parts of predicates that can not contribute to the computation
of the answers. Equation (4.10) states that ∃ distributes through ‖. This is
a much used equality in program transformation because it helps us break
apart larger predicates, and is true even without the standardisation of
answers.

exists(λx. x .= t) = true, (4.9)

exists(λx. (r1 x ‖ r2 x)) = exists(λx. r1 x) ‖ exists(λx. r2 x). (4.10)

Equation (4.9) holds because, if the variable x1 is fresh, x1
.= t must be

unifiable. Equation (4.10) holds because in the definition of ‖ both conjuncts
are applied to the same input answer, so exists will supply the same fresh
variable to both disjuncts.

The equation (4.11) states that two nested applications of ∃ can be ex-
changed, and is true because the sets of answers computed by r x1 x2 and
r x2 x1 are equal when reduced to the standard form, if x1 and x2 are fresh.
Some of the fresh variables will be numbered differently in the result, but
upon renumbering of the local variables, the results would be the same. So

48



we have:

exists(λx. exists(λy. r x y)) = exists(λy. exists(λx. r x y)). (4.11)

The next law (4.12) is a special case of the one-point rule and is used for
parameter passing. Intuitively, once the & operator has passed on the sub-
stitutions resulting from x

.= u to further computation, this subpredicate is
superfluous. The condition in this equation is that x and umust be unifiable,
that is, if x �∈ Var(u), we have:

exists(λx. (x .= u& rx)) = ru. (4.12)

The main step in the proof below is based on the law (4.28) about the
substitution of equals for equals; we justify this law in the next section.

exists(λx. x .= u& r x)

= x′ .= u& r x′ by (3.6)

= x′ .= u& r u by (4.28)

= exists(λx. x .= u) & r u by (3.6)

= true & r u by (4.9)

= r u. by (4.2)

In summary, and in shorthand notation, we have the following algebraic laws
regarding the operator ∃:

(∃x. r x) = (∃ y. r y), (4.13)

(∃x. p) = p, (4.14)

(∃x. p& r x) = p& (∃x. r x), (4.15)

(∃x. x .= t) = true, (4.16)

(∃x. r1 x ‖ r2 x) = (∃x. r1 x) ‖ ∃x. r2 x), (4.17)

(∃x1. (∃x2. r x1 x2)) = (∃x2. (∃x1. r x1 x2)), (4.18)

(∃x. x .= t & r x) = r t. (4.19)

This list of laws is very similar to the laws given for Cylindric Algebra [62]
of Henkin, Monk and Tarski, or Regular Logic [48] of Freyd and Schedrov,

49



which extend Boolean Algebra by adding axioms to deal with existential
quantifiers and equality, and allow an alternative presentation of predicate
logic. However, not all of those laws hold, for the same reason as for & and ‖:
the operational semantics of logic programming reproduces the declarative
semantics of predicate logic in a close but imperfect manner.

Two additional laws (4.20) and (4.21) are much used in program transfor-
mation to split predicates; both deal with scoping of ∃. The first follows
trivially from two applications of the law (4.8). The second follows from the
distributivity equation (4.10) and the equation for eliminating the unwanted
quantifiers (4.8).

(∃x1. (∃x2. r1 x1 & r2 x2)) = (∃x1. r1 x1) & (∃x2. r2 x2), (4.20)

(∃x1. (∃x2. r1 x1 ‖ r2 x2)) = (∃x1. r1 x1) ‖ (∃x2. r2 x2), (4.21)

These equalities require rewriting to the standard forms, that is, they hold
only up to variable renaming.

4.3 Laws regarding .=

From a model-theoretic point of view, it is a well known result that the
completed form of a predicate has the same models as the original predicate,
provided that the relation “=” is interpreted as identity, where t1 = t2 is
interpreted to be true if t1 and t2 are interpreted as the same element of
the domain. In our notation, equality between terms is denoted by .=. The
following free equality axioms capture the prescribed behaviour of equality
in an algebraic manner:

f(t1, ..., tn) .= f(t′1, ..., t
′
n) ≡ t1

.= t′1 & ...& tn
.= t′n, (4.22)

for each n-ary function f

f(t1, ..., tn) .= g(t′1, ..., t
′
m) ≡ false, (4.23)

for each n-ary function f and m-ary function g such that f �= g

x
.= t ≡ false, (4.24)

for each variable x and term t such that x ∈ Var(t)

50



t
.= t ≡ true. (4.25)

t1
.= t2 ≡ t2

.= t1. (4.26)

t1
.= t3 ≡ (∃t2. t1 .= t2 & t2

.= t3). (4.27)

Here and in the rest of this section, to avoid confusion with .=, we use ≡ to
denote equality between two Haskell terms. These laws recognisably charac-
terise the rationale of the unification algorithm, as described in Chapter 2.
Law (4.22) corresponds to the conditions under which two functional terms
are unifiable, where the two main function symbols are equal and all the cor-
responding components are unifiable. Law (4.23) deals with non-unifiability
due to a mismatch between function symbols, while law (4.24) deals with
non-unifiability due to the failure of the occurs-check. The laws (4.25–4.27)
are the standard axioms for equality. The laws (4.22) and (4.25) overlap
for the case of functional terms, but we include the second one because of
variables.

It is easy to see that these laws are obeyed in our implementation of .=, since
.= is implemented as a wrapper around unification, which is implemented
according to the standard unification algorithm described in Chapter 2.
The only additional action is that a counter for fresh variables is passed
along with the computed substitution, but this counter is not affected by
the computation of .=, so the interesting properties only concern the answer
substitutions.

Also the Leibnitz law about substitution of equals for equals holds. It is a
consequence of the implementation of & and a healthiness property which
will be proved later. This property states that predicates do not differentiate
between arguments which have the same value under the input substitution.
We have:

t1
.= t2 & r t1 ≡ t1

.= t2 & r t2. (4.28)

This is true because, in each case the first conjunct computes a substitution
in which t1 is unified with t2. The & operator then passes this substitution
as an input to predicates r t1 and r t2, and due to the property mentioned
above, these predicates do not differentiate between the arguments t1 and
t2, when applied to a substitution where these two are unified.

51



This last law is particularly useful for program transformation, because it
is used to simulate the passing of computed substitutions between the con-
juncts; it reproduces the effect of a computation of unifications and a sub-
sequent application of the remaining predicates to this input.

The algebraic laws presented in this section are shown valid for the imple-
mentation of embedding that computes by depth-first search. The rest of
the thesis extends this result in several ways. First we introduce implemen-
tations of the embedding for alternative search strategies, and use these in
a categorical setting to analyse the completeness of this set of laws, and
their genericity. Then we use this list of laws to argue for the correctness
of the embedding, by simulating LD-resolution. Finally, we use the laws to
conduct program transformation.

52



Chapter 5

Different Search Strategies

The basic implementation of embedding uses streams to mimic the standard
depth-first strategy of Prolog. We now explore alternative implementations
for two other search strategies: a model where the search tree is traversed
in a breadth-first manner, and a general model which allows any traversal.

5.1 Breadth-first search

In a model that allows breadth-first search, we need to maintain the informa-
tion about the computational cost for each answer. The cost of an answer is
measured by the number of resolution steps required in its computation. To
record this information, we let predicates in our breadth-first model return
a stream of bags, or a matrix , of answers; each successive bag of answers
in the stream contains the answers with the same computational ‘cost’. In
order to present simpler definitions of predicate operators, where we are not
distracted by questions of the exact depth at which a predicate terminates,
we let this stream of bags be infinite for all predicate calls.

The underlying implementation of bags and lists is same in a functional
language, but we use the Bag type constructor to stress the semantical
difference, and we use bag equality for all our algebraic laws. Since each
bag represents the finite number of answers reached at the same depth, of
the search tree, and since there are only a finite number of branches in each

53



node in the search tree, all the bags must be finite. In such case, the bag
equality is always computable. The type of Predicate is thus:

type Predicate = Answer → Matrix Answer ,

type Matrix a = Stream (Bag a).

The implementations of the operators ‖ and & need to be adapted to work
on matrices and to propagate the cost information for answers.

The ‖ operator simply zips the two matrices into a single one, by taking the
bag-union � of all the bags of answers with the same cost, and returning
a single stream of these new bags. The function zipwith does this pairwise
union; it requires that its input lists are of the same length, but this is
ensured since in the breadth-first model the streams p1(σ) and p2(σ) are
infinite for any σ. So the implementation of ‖ in the breadth-first model is:

(p1 ‖ p2) x = zipwith (�) (p1 x) (p2 x). (5.1)

The implementation of & is harder, because for each answer it has to add
the costs of its component computations. The idea is first to compute the
answers to p1(σ), then map p2 on each answer σ′ in the resulting matrix by
the matrix-map function mmap, and then to flatten the resulting matrix of
matrices to a single matrix of answers according to the cost. This flattening
is done by the shuffle function as explained below. The &-operator is thus:

p1 & p2 = shuffle ·mmap p2 · p1. (5.2)

We now try to illustrate this definition of &. Let, for the sake of brevity,
S stand for for streams and L for finite lists, and recall that our bags are
implemented as finite lists.

The function mmap is simply a composition of map with itself. A matrix is
a stream of bags, so we write SL. The result of mmap p2 · p1 is then of type
SLSL. It can be visualised as a matrix of matrices, where each element of
the outer matrix corresponds to a single answer of p1(σ). The first row in
this matrix contains all the answers to p1(σ) with cost zero, the next row
contains all the answers to p1(σ) with cost one etc. Each such answer σ′ is
used as an input to p2 and consequently gives rise to a new stream of lists of

54



answers, which are represented by the elements of the inner matrices. The
first row of the resulting sub-matrix contains the answers to p2(σ′) with cost
zero and so on.

The cost of each answer to (p1 & p2)(σ) is obtained by combining the costs
of the two computations. For example, the answers of mmap p2 · p1(σ) with
cost 2 are marked in the drawing below:

The rows of both the main matrix and the sub-matrices are finite, while the
columns of both are infinite.

The function shuffle collects all the answers marked in the drawing, and all
the other corresponding answers, into lists. It returns a stream of bags SL,
where the first bag contains all the answers with combined cost zero, the
next bag contains the answers with cost one, and so on.

Thus, shuffle is given an SLSL of answers, and it has to return an SL. Two
auxiliary functions are required to do this: diag and transpose:

diag :: Stream (Stream a)→ Stream (List a)

diag xss = [[(xss ! i) ! (n− i) | i← [0..n]] | n← [0..]],

transpose :: List (Stream a)→ Stream (List a)

transpose xss = [[xs ! n | xs← [xss]] | n← [0..]].

A stream of streams is converted to a stream of lists by diag , by collecting one
element from each stream in a list, following the finite diagonal. So, in diag ,
if xss(i, j) denotes the jth element in the ith list of xss, the first resulting
list contains only the element xss(0, 0), the second list contains elements

55



xss(1, 0) and xss(0, 1), and so on. Thus, diag can be used to combine the
costs of answers, but first we need to convert the input SLSL to form which
can be processed by diag ; this is done by transpose. This function converts
a list of streams to a stream of lists, by collecting all the first elements of
each stream in the first list, and so on. Since there is a finite number of
streams in the input, each resulting list must be finite.

Given diag and transpose, the function shuffle can be implemented as fol-
lows. The input to shuffle is of type SLSL. The application of map transpose
swaps the middle LS to an SL, and gives SSLL. Then the application of diag
converts the outermost SS to SL and returns SLLL. This can now be used
as input to map (concat · concat) which flattens the three innermost levels
of lists into a single list, and returns SL:

shuffle = map (concat · concat) · diag ·map transpose.

From the definitions of these functions it can be proved by structural induc-
tion on the matrices that they enjoy the following algebraic properties:

mmap (f · g) = (mmap f) · (mmap g), (5.3)

mmap f · shuffle = shuffle ·mmap (mmap f), (5.4)

shuffle ·mmap shuffle = shuffle · shuffle, (5.5)

zipwith f (zipwith f l1 l2) l3 = zipwith f l1 (zipwith f l2 l3), (5.6)

mmap f(zipwith g l1 l2) = zipwith g (mmap f l1)(mmap f l2), (5.7)

shuffle · zipwith (�) l1 l2 = zipwith (�)(shuffle l1)(shuffle l2). (5.8)

The law (5.6) requires that f is associative, and the law (5.7) holds only if
f and g “commute” in the sense that f(g a b) = g (f a) (f b). For these
equalities to hold it is necessary to interpret the equality sign in the laws as
equality of streams of bags rather than a stream equality. Since all the bags
are finite, such equalities are computable.

The predicate true has to be lifted to matrices, where true(σ) returns the
infinite stream with the bag containing σ as its only answer at level 0, and
empty bags at all other levels. The predicate false in the matrix model has
no answers at any level so for any input answer it returns an infinite stream
of empty streams [[ ], [ ], . . . ]. The predicate operators ∃, .= and not can be

56



implemented in a very similar way to their implementation in the depth-first
model. So, the only other significant changes from Chapter 3 are:

true x = [x] : repeat [ ], (5.9)

false x = repeat [ ]. (5.10)

Finally, the book-keeping of the resolution costs for each of the answers to
a predicate is implemented by the function step, with type Predicate →
Predicate. In the breadth-first model, the definition of each predicate needs
to be changed to perform a call to step on the outermost level; the cost
of computation of the predicate should be increased by one each time the
definition is unfolded. Therefore, in the breadth-first model, step p(σ) shifts
all the bags of answers to p(σ) one position to the right:

step p x = [ ] : (p x). (5.11)

Further, all the algebraic laws for true, false, & and ‖ listed in Chapter 4
hold in this model as well. As before, the proofs of these laws are based
on equational reasoning. The proofs here correspond exactly to the ones
from Chapter 4. They depend on the definitions of the operators and on
the properties (5.3–5.8) of matrix functions for mmap, shuffle and zipwith.
For example, in the proof of the associativity of ‖, we use the associativity
property of zipwith (5.6), and in the proof of the right-distributivity of &

through ‖ we use the distributivity properties of mmap and shuffle through
zipwith (5.7–5.8). A thorough mathematical treatment of all the laws in this
model can be found in Spivey [132]. As an example we show the proof of
the associativity of & in this model:

(p1 & p2) & p3

= shuffle ·mmap p3 · shuffle ·mmap p2 · p1 by (5.2)

= shuffle · shuffle · (mmap mmap p3) ·mmap p2 · p1 by (5.4)

= shuffle ·mmap shuffle · (mmap mmap p3) ·mmap p2 · p1 by (5.5)

= shuffle ·mmap (shuffle ·mmap p3 · p2) · p1 by (5.3)

= p1 & (p2 & p3). by (5.2)

As mentioned earlier in this section, we choose to let all predicates in this

57



model return in infinite stream of answer lists, where in the case of a finite
LD-tree, the answer lists eventually become empty. With this choice, we
compromise the information about the finiteness of the LD-tree, but in re-
turn the algebraic laws remain simple, and the same as in the other models.
In the alternative implementation of this model, where the finite LD-tree
corresponds to a finite lists of lists of answers, two programs that are identi-
cal for all practical purposes could differ in how many empty lists of answers
they return after having returned the last “proper” answer. These empty
lists may appear due to the “flattening” of the matrix. Since the equality in
our algebraic laws means extensional equality of two Haskell programs, we
would not be able to equate a program that returns one additional empty
list with one that returns none.

The implementation of a breadth first model that incorporates the infor-
mation about the finiteness of the LD-tree is, however, not difficult. The
significant changes are only required for the functions diag and transpose,
where one has to deal with the case where on of the sub-lists terminates
before the others:

diag :: Stream (Stream a)→ Stream (List a)

diag [ ] = [ ]

diag ([ ] : xss) = [ ] : diag xss

diag ((x : xs) : xss) = [x] : zipw (++) (map wrap xs) (diag xss),

transpose :: List (Stream a)→ Stream (List a)

transpose [ ] = [ ]

transpose (xs : xss) = zipw (++) (map wrap xs) (transpose xss).

Here the function zipw corresponds to the function zipwith which has been
adapted to deal with input lists of different lengths:

zipw :: (a→ a→ a)→ List a→ List a→ List a

zipw f xs [ ] = xs

zipw f [ ] ys = ys

zipw f (x : xs) (y : ys) = f x y : zipw f xs ys.

58



5.2 The general search model

In a model that allows the use of both depth-first and breadth-first search, the
predicates can be modelled by functions returning lists of trees, or forests,
of answers. The answers to a predicate call are found in the leaves of the
trees in the returned forest, and the cost of each answer corresponds to its
depth in the respective tree.

The motivation for choosing forests rather than just trees for the type of
answers is that ‖ and & cannot be cost-preserving on trees. If only trees
were used, p1 ‖ p2 would have to combine their trees of answers by inserting
them under a new parent node in a new tree, but that would increase the
cost of each answer to p1 ‖ p2 by one. For example, the answers to p ‖ false
would in the tree model cost more than the answers to p, which would be
wrong – the number of resolution steps performed is the same. Also, in the
tree model the ‖ operation would not be associative.

The type Answer is same as before. Each inner node in a tree can have an
arbitrary number of children; this can be implemented by collecting all the
children nodes in a new forest:

type Predicate = Answer → Forest Answer ,

type Forest a = List (Tree a),

data Tree a = Leaf a | Fork (Forest a).

The implementations of ‖ and & operators in this model are similar to
the implementations in the stream model, but have to preserve the cost
information for answers. The ‖ operator actually stays the same, it just
concatenates the two forests of answers, since forests are lists of trees and
since costs of answers do not change in the computation of ‖:

(p1 ‖ p2) x = p1 x++ p2 x. (5.12)

During the computation of (p1 & p2)(σ) in the forest model, p1 computes its
answers first and returns them as leaves of the resulting forest. Then p2 is
applied to each leaf σ′ in this forest. This application is performed by the
function fmap, and it results in a new forest of answers at each leaf. These

59



forests are grafted into the corresponding trees by the function fgraft :

p1 & p2 = fgraft · fmap p2 · p1. (5.13)

The functions fgraft and fmap are central for the general search model; using
intuition about streams, fgraft can be thought of as concat for forests, and
fmap as map for forests. They are implemented using the auxiliary functions
tgraft and tmap as follows:

fgraft = concat ·map tgraft, (5.14)

tgraft (Leaf x) = x, (5.15)

tgraft (Fork x) = [Fork (fgraft x) ], (5.16)

fmap f = map (tmap f), (5.17)

tmap f (Leaf x) = Leaf (f x), (5.18)

tmap f (Fork xf) = Fork (fmap f xf). (5.19)

From these definitions it can be proved by structural induction that fmap
and fgraft are both homomorphisms with respect to ++, and that they share
the standard properties of the functions map and concat :

fmap (g · f) = (fmap g) · (fmap f), (5.20)

fmap f · fgraft = fgraft · fmap (fmap f), (5.21)

fgraft · fgraft = fgraft · fmap fgraft. (5.22)

In terms of category theory, (5.20) expresses the fact that fmap is a functor,
as are map and mmap; (5.21) expresses that fgraft is a natural transforma-
tion, as are concat and shuffle; and (5.22) expresses the associativity law,
and we had the same associativity properties in the previous two models.
We shall return to these similarities in the next chapter.

As an example, we give the proof of (5.22). The function fgraft is defined
through indirect recursion with the function tgraft , so a proof of (5.22)
requires a simultaneous inductive proof of the equation (5.23):

fgraft · tgraft = tgraft · tmap fgraft. (5.23)

60



Assuming that (5.23) holds, we prove (5.22):

fgraft · fgraft
= concat ·map tgraft · concat ·map tgraft by (5.14)

= concat · concat ·map (map tgraft) ·map tgraft by (2.3)

= concat ·map concat ·map (map tgraft) ·map tgraft by (2.4)

= concat ·map (concat ·map tgraft · tgraft) by (2.2)

= concat ·map (fgraft · tgraft) by (5.14)

= concat ·map (tgraft · tmap fgraft) by (5.23)

= concat ·map tgraft ·map (tmap fgraft) by (2.2)

= fgraft · fmap fgraft by (5.14,5.17)

To prove (5.23), we need to look at both inductive cases. The proof of the
base case, fgraft (tgraft (Leaf xf)) = tgraft (tmap fgraft (Leaf xf)), follows
trivialy from the definitions (5.15) and (5.18). In the proof of the step case,
if xft = Fork xf and the induction hypothesis (5.22) holds of xf , we find:

(fgraft · tgraft) (Fork xf )

= fgraft [Fork (fgraft xf ) ] by (5.16)

= concat (map tgraft [Fork (fgraft xf ) ]) by (5.14)

= concat [ tgraft (Fork (fgraft xf )) ] by (map)

= [ tgraft (Fork (fgraft xf )) ] by (concat)

= [Fork (fgraft (fgraft xf )) ] by (5.16)

= [Fork (fgraft (fmap fgraft xf )) ] by (5.22)

= tgraft (Fork (fmap fgraft xf )) by (5.16)

= tgraft · tmap fgraft (Fork xf ) by (5.19)

Regarding the remainding basic predicate operators of the embedding, not
much change is needed. The types are different, but the implementation of
∃, .= and not operators is otherwise analogous to that in the depth-first and
breadth-first models.

The same strong analogy holds for the primitive predicates true and false.
In the depth-first model false(σ) returned the empty stream and true(σ)

61



returned the singleton list containing σ. Now we make false(σ) return the
empty forest and true(σ) returns the one-leaf forest [Leaf (σ) ]:

true x = [Leaf x ], (5.24)

false x = [ ]. (5.25)

In this model, the function step pushes all the computed answers one level
down the tree by adding a new parent node as a root. Given a forest of
answers p(σ), the function step creates a new a tree with Fork , and converts
this tree into a singleton forest:

step p x = [Fork (p x) ].

Regarding the algebraic laws for the operators, the laws that were listed in
Chapter 4 hold of this model as of the previous two. In the forest model, the
proofs for laws regarding true and false follow directly from the definitions
of the operators; the associativity of ‖ follows from the associativity of ++;
the associativity of & has a similar proof as for matrices and uses (5.20–
5.22); and the proof of the distributivity of & through ‖ from the left uses
the distributivity of fgraft and fmap through ++.

5.3 Laws regarding step

In Chapter 4, we have listed laws concerning the embedding that are true
both in the declarative and the operational sense. However, if we wish to
use the laws for program transformation and derivation, we need to step
over the “operational” boundary, and be more permissive in our criteria
about the usable laws. Indeed, if the transformed predicate is to become
computationally superior to the starting predicate, it must have a different
search tree, and all our previous laws preserve the shape of the search tree.

For the purposes of program transformation, we wish to view two programs
as equal if they compute the same collection of answers. This is a stricter no-
tion of equality than the one provided by the declarative reading of logic pro-
grams, according to which two programs with the same declarative semantics
might produce completely different results (under some search strategies).

62



On the other hand, the procedural equality of logic programs that arises from
the laws (4.1–4.28) is arguably too strict for interesting program transfor-
mation techniques.

The laws presented in this section equate predicates with different search
trees which still result in the same set of computed answers, under any given
search strategy. However, now we do not require for the respective streams,
matrices or forests of computed answers to be equal.

In order for this criterion to be satisfied under all search strategies, the two
predicates must have similar search trees, in sense that all the branches con-
taining the finitely reachable leaves must be found in the same left-to-right
order. However, the finitely reachable answers may be found at (finitely) dif-
ferent relative depths, and the internal nodes may have different branching
factors. Indeed, the search trees of more efficient predicates will typically
have shorter paths to the answers leaves and the the internal nodes with the
high branching factor will be further away from the root node.

The construction of the search tree for an embedded predicate is captured
by the function step. As discussed earlier, the rôle of function step in fair
search models is to account for the cost of an answer; each time a predicate
definition is unfolded, step records this by either pushing the answers down
by one level in the search tree, or down by one row in the matrix. Informally,
step provides a “timed” interpretation of logic programming, and can be
thought of as a tick in the timed models of processes, as in CSP [64]. The
difference in the shape of the tree, or alternatively in the structure of the
matrix, can be captured by manipulating occurences of step, and the laws we
present in this section capture the manipulations which yield similar trees.

It is worth noting that the laws presented here hold trivially in the unfair
search model of depth-first traversal. This is because this model implements
step as the identity function, since the cost of an answer is inconsequential.

The following properties of step preserve the search tree, and therefore the
cost and order of answers under any search strategy:

(step p1) & p2 = step (p1 & p2), (5.26)

∃x. step p = step (∃x. p). (5.27)

63



The following laws allow us to equate predicates with similar trees:

p1 & (step p2) � step (p1 & p2), (5.28)

(step p1) ‖ (step p2) � step (p1 ‖ p2), (5.29)

step p � step (step p). (5.30)

In law (5.28), the step on the right-hand side pushes all the answers one
level down by inserting a new branch at the bottom, while the step on the
left-hand side adds a new branch at the top. The law (5.29) lets us move a
branching point one step down the tree. Finally, the law (5.30) allows us to
shorten a path between the two nodes.

We shall use the laws presented in this section for program transformation
in Chapter 9, but for now we return to the list of laws that hold in the
procedural sense. We have so far show that the three implementations of the
embedding, corresponding to different search models, share the same list of
algebraic laws. The laws presented in Chapter 3 hold for the corresponding
operators in each model. We now proceed to formalise and explore this
strong algebraic relationship between the different models.

64



Chapter 6

The Relationship Between
Search Strategies

In this chapter the depth-first and breadth-first models are shown to be
special cases of a general model of tree searching. We show that the laws
regarding search are an enrichment of the categorical concept of a monad,
and we explore the links between such monads.

6.1 Three search monads

The aim of this section is to present the mathematical framework which will
help us explore and express the relationships between our three models.

Moggi introduced in [88], and Wadler later popularised in [144, 145], the
idea that many aspects of functional programming, for example laziness or
eagerness of evaluation, and even non-functional aspects such as nondeter-
minism or handling of input and output, can be captured by the monad
construction from category theory. Our models of logic programming, and
their relationships, relate in a similar manner to concepts from category
theory.

It is useful to note that, even though we use the language of category the-
ory to present the results in this chapter, this work could also have been

65



presented with no reference to category theory. Its use here merely shortens
the presentation, and offers intuition about some generic properties of the
functions involved.

We have so far described implementations of three search strategies for logic
programming, and we have seen that the same set of algebraic laws holds
for the structuring operators of each model. We now show that the common
behaviour of these models can be captured by a certain extension of a monad ,
and that the relationship between the three models can be described as a
monad morphism. Finally, we show that our forest model is indeed the
most general model satisfying our specification of such extended monads; in
categorical language, it is the initial object of the category of search monads.

A monad is a type constructor T together with a triple (mapT , unitT , joinT ),
where mapT , unitT and joinT are polymorphic functions with types:

mapT :: (a→ b)→ T a→ T b,

unitT :: a→ T a,

joinT :: T (T a)→ T a.

Below we denote the identity function as id. For such a triple T to qualify
as a monad, the following equalities must be satisfied:

mapT id = id , (6.1)

mapT (f · g) = mapT f ·mapT g , (6.2)

mapT f · unitT = unitT · f , (6.3)

mapT f · joinT = joinT ·mapT (mapT f ), (6.4)

joinT · unitT = id , (6.5)

joinT ·mapT unitT = id , (6.6)

joinT ·mapT joinT = joinT · joinT . (6.7)

In terms of category theory, the equalities (6.1) and (6.2) express that T and
mapT form a functor . The equalities (6.3) and (6.4) express that unitT and
joinT are natural transformations, and the equalities (6.5), (6.6) and (6.7)
express the monad laws; (6.5) is usually referred to as the left unit law, (6.6)
as the right unit law, and (6.6) is the associative law for the monad.

66



Our depth-first model of search can be captured by a monad Stream, for
which we will use S as a subscript. In this monad, the type constructor
is Stream, and mapS is the standard stream function map; unitS is the
basic list unit constructor [−], and joinS is concat . One can easily verify
that (map, [−], concat) is a monad. The equations (6.1, 6.2, 6.4) and (6.7)
correspond to the standard laws for list operators (2.1–2.4); the rest of the
equations follow from the definitions of map and concat .

For our breadth-first search model, the Matrix monad, denoted by M ,
results from taking mmap for mapM , the infinite matrix unit constructor
[[−], [ ], [ ], . . . ] for unitM and shuffle for joinM . The equations (6.2), (6.4)
and (6.7) for this monad correspond to the equations (5.3–5.5), and the re-
maining equations can be proved from the definitions of the matrix functions
mmap and shuffle.

Finally, the Forest monad, denoted by F , results from taking the function
fmap for mapF , the forest unit constructor [Leaf −] for unitF and fgraft for
joinF . Again, the equations (6.2), (6.4) and (6.7) for this monad are the same
as the equations (5.20–5.22) described in Section 5.2, and the remaining ones
can be proved from the definitions of the forest functions fmap and fgraft .
For example, the unit laws (6.5) and (6.6) for this monad are:

fgraft · [Leaf ] = id fgraft · fmap [Leaf ] = id,

both of which follow from the definitions of fgraft , concat and fmap.

Given any monad T , we can define a composition operator �T called the
Kleisli composition (cf. [10]), such that:

(�) :: (a→ T b)→ (b→ T c)→ (a→ T c), (6.8)

p�T q = joinT ·mapT q · p. (6.9)

The operator �T is associative with unit element unitT :

unitT � p = p, (6.10)

p� unitT = p, (6.11)

m� (p� q) = (m� p)� q. (6.12)

67



The operator �T corresponds exactly to the definition of the operator &

in each of the models, and unitT corresponds to our function true in each
model. We know that in all three models & is associative with unit ele-
ment true, so the laws (6.10–6.12) are satisfied in the Stream, Matrix and
Forest monads. In that sense we can say that they capture the algebraic
semantics of the operator & and predicate true in our three models of logic
programming.

The remaining structural parts of each model are the implementations of ‖,
false, and step. We have seen that ‖ and false have very similar implemen-
tations and behaviour in each model. We wish to capture that common
behaviour and properties in an extension of the above notion of monad.
In this general setting we shall refer to ‖ in each model as orT , to false as
emptyT , and to step as wrapT . We continue to write orT as an infix operator.

Regarding orT and emptyT , we know that in all the three models, the opera-
tor corresponding to orT is associative and has the predicate corresponding
to emptyT as its unit element, and that �T distributes through orT from
the left, but not from the right. Further, the predicate emptyT is a left zero
for �T :

emptyT orT p = p, (6.13)

p orT emptyT = p, (6.14)

p1 orT (p2 orT p3) = (p1 orT p2) orT p3, (6.15)

(p1 orT p2)�T p3 = (p1 �T p3) orT (p2 �T p3) (6.16)

emptyT �T p = emptyT . (6.17)

We can reduce the last two laws in this list using the definition of �T in
terms of joinT and mapT . Then the law (6.16) is equivalent to the two laws
(6.18–6.19), and the law (6.17) is equivalent to (6.20–6.21). We have:

mapT f (p1 orT p2) = (mapT f p1) orT (mapT f p2), (6.18)

joinT (p1 orT p2) = (joinT p1) orT (joinT p2), (6.19)

mapT f emptyT = emptyT , (6.20)

emptyT joinT = emptyT . (6.21)

68



Here the law (6.18) simply states that orT is a natural transformation, and
the law (6.20) states that emptyT is a natural transformation.

Regarding wrapT , the implementation of step in each model is dictated by
the type of predicates in the search model, so, wrapT captures some essential
information about the behaviour of the search models. The central property
of wrapT in each model is that it is a natural transformation, and that it
commutes with joinT :

wrapT · joinT = joinT · wrapT . (6.22)

In depth-first search model step is the identity so this property holds triv-
ially. In the breadth-first model join is implemented by shuffle, which sorts
the answers from the input Matrix(Matrix) to a single Matrix , while step
advances all the answers from the input Matrix further by one list. Infor-
mally, we can either advance all the answers and then shuffle, or shuffle and
then advance. The proof is by structural induction. The argument is the
same for the forest model, with fgraft and step.

Adding orT , emptyT and wrapT , we define an extended monad as a six-tuple:

T+ = (mapT , unitT , joinT , emptyT , orT , wrapT ),

such that mapT is a functor, and unitT , joinT , emptyT , orT , and wrapT are
natural transformations with the following properties:

1. mapT obeys the functor laws (6.1–6.2),

2. (mapT , unitT , joinT ) form a monad, respecting the laws (6.3–6.7),

3. orT , emptyT and wrapT are natural transformations, (6.18, 6.20, 6.22),

4. orT is associative with unit emptyT , as in (6.13–6.15),

5. joinT distributes over orT , as in law (6.19), and

6. emptyT is a left zero for joinT , as in law (6.21).

The first two requirements above are the “inherited” properties of a monad.
These six requirements correspond exactly to our algebraic laws. Thus, the
extended monads Stream, Matrix and Forest capture the algebraic semantics

69



of the three different scheduling strategies for logic programming.

Stream = (map, unitS, concat, emptyS, orS, id),

Matrix = (mmap, unitM , shuffle, emptyM , orM , wrapM),

Forest = (fmap, unitF , fgraft, emptyF , orF , wrapF ).

The function �T is a Kleisli composition for each basic monad, and is there-
fore determined by joinT and mapT .

We can easily convince ourselves that all the five requirements above hold for
each of these extended monads. The first property holds as a consequence
of the way polymorphic recursive data types are defined in Haskell. The
second and third property, stating the associativity of ‖ and &, and their
unit elements, can be proved as in Chapter 4 for all other extended monads.
The fourth property states that joinT distributes over orT , and we know
from chapters 3 and 5 that concat , shuffle and fgraft distribute over ++,
zipwith � and ++ respectively. As we have shown in the equational proofs
in each model, the right-distributivity of & through ‖ follows from these
two properties. The fifth property states that the zero elements for, concat ,
shuffle and fgraft , are respectively [ ], [[ ], [ ], . . . ] and [ ]; it follows directly
from the definitions of these functions. This is the property that is used
together with the fact that the map functions in each model leave these
terms unchanged, to prove in each model that empty is a left zero of &. The
last property on the list above requires that wrapT is well-behaved in the
sense discussed before, where the omitted proof can be done by structural
induction.

6.2 The relationships between monads

In the most general model, each query to a logic program returns a forest
corresponding to the search tree of the query. We now show that the other
two search models can be obtained from this most general one.

The forest of answers can be converted to a stream of answers, by travers-
ing the forest in a depth-first manner. The function dfs below, with type
Forest a → Stream a, implement this traversal strategy. Alternatively, the

70



forest can be converted to a matrix of answers, by traversing the tree in
a breadth-first manner. This traversal is implemented by the function bfs
below, with type Forest a→ Stream List a. For the purpose of printing the
answers from this breadth-first matrix, it can be flattened to a single stream
of answers by simple concatenation.

The dfs function applies the auxiliary dfs1 function to each tree in the input
forest and concatenates the resulting streams. The function dfs1 returns the
leaf nodes of each tree in a depth-first manner, by recursively calling dfs:

dfs xff = foldr concat [ ] (map dfs1 xff), (6.23)

dfs1 (Leaf x) = [x], (6.24)

dfs1 (Fork xf) = dfs xf. (6.25)

Then, by (6.23), for a singleton forest [t], we have dfs [t] = dfs1 t, and for a
forest [t1, . . . , tn] we get:

dfs [t1, . . . , tn] = (dfs1 t1) ++ . . .++ (dfs1 tn).

The bfs function needs to take account of the cost of the answers. It does
this by converting each of the trees in the input forest into matrices, using
the auxiliary function bfs1, and collecting the answers with same cost from
each matrix into bags using zipwith �. We have:

bfs xff = foldr (zipwith �) falseM (map bfs1 xff), (6.26)

bfs1 (Leaf x) = [x] : repeat [ ], (6.27)

bfs1 (Fork xf) = [ ] : bfs xf. (6.28)

Again, by (6.26), for a singleton forest [t], we have bfs [t] = bfs1 t, and for a
forest [t1, . . . , tn] we get:

bfs [t1, . . . , tn] = (bfs1 t1) (zipwith �) . . . (zipwith �) (bfs1 tn).

Below we argue that any query results in the same stream of depth-first
sorted answers regardless whether one computes the answers in the stream
model, or one computes the answers by the forest model and then applies dfs
to this forest. Also, one gets the same matrix of breadth-first sorted answers,

71



either by computing queries directly in the matrix model or by applying bfs
to the forest resulting from the most general model. Categorically speaking,
we show that there exist morphisms between the three monads, and that
they are exactly the functions dfs and bfs.

The polymorphic function dfs is a morphism between the extended monads
Forest and Stream if it maps the predicates unitF and emptyF to their coun-
terparts in the stream model and if it preserves the behaviour of the basic
predicates operators. Formally, dfs is a Forest =⇒ Stream morphism if:

dfs · unitF = unitS, (6.29)

dfs · emptyF = emptyS, (6.30)

dfs ·mapF f = mapS f · dfs, (6.31)

dfs · (p1 �F p2) = (dfs · p1)�S (dfs · p2), (6.32)

dfs · (p1 orF p2) = (dfs · p1) orS (dfs · p2). (6.33)

dfs · wrapF = wrapS · dfs. (6.34)

The equations (6.29) and (6.30) follow directly from the definitions of dfs
and the predicates true and false in the depth-first and general models. The
proof of (6.33) is a simple consequence of the distributivity of concat and
map through ++. The proof of (6.34) follows from the definition of step in
the forest model and the fact that step is identity in the depth-first model.

The proofs of equations (6.31) and (6.32) are slightly more complicated than
the others. The proof of (6.31) requires a simultaneous induction for dfs and
dfs1, similarly to the proof of (5.22). Equation (6.32) requires in addition a
proof of the following lemma:

dfs · fgraft = concat · (dfs ∗ dfs). (6.35)

The proof of (6.35) can also be done by simultaneous induction on dfs and
dfs1. Expressed in a commuting diagram, it means:

Forest (Forest X )
dfs∗dfs

��

fgraft
��

Stream (Stream X )

concat
��

Forest X dfs
�� Stream X

72



Here dfs ∗ dfs denotes a categorical construction called the horizontal com-
position of natural transformations (cf. [10]). In the case at hand we have:

dfs ∗ dfs = dfs · fmap dfs = map dfs · dfs. (6.36)

These equations are instances of the so-called exchange law for natural trans-
formations. The two expressions for dfs ∗ dfs are equal because the diagram
below can be proved to commute:

Forest (Forest X )
dfs

��

fmap dfs
��

dfs∗dfs

����
��

��
��

��
��

��
��

��
�

Forest (Stream X )

map dfs
��

Stream (Forest X )
dfs

�� Stream (Stream X )

This diagram corresponds to the fact that given a forest of forests, and using
depth-first search, it does not matter which forest we choose to first flatten
to a stream. Using (6.31) and(6.35), the proof of (6.32) is:

dfs · (p1 �F p2)

= dfs · joinF ·mapF p2 · p1 by (5.13)

= joinS ·mapS dfs · dfs ·mapF p2 · p1 by (6.35, 6.36)

= joinS ·mapS dfs ·mapS p2 · dfs · p1 by (6.31)

= joinS ·mapS (dfs · p2) · dfs · p1 by (2.2)

= (dfs · p1)�S (dfs · p2). by (3.3)

Similarly, to prove that also bfs is a monad morphism, we need to show
that it correctly maps predicates unitF and emptyF and that it preserves the
correspondences between the basic operators of the two models:

bfs · unitF = unitM , (6.37)

bfs · emptyF = emptyM , (6.38)

bfs ·mapF f = mapM f · bfs, (6.39)

bfs · (p1 �F p2) = (bfs · p1)�M (bfs · p2), (6.40)

bfs · (p1 orF p2) = (bfs · p1) orM (bfs · p2). (6.41)

bfs · wrapF = wrapM · bfs. (6.42)

73



The proofs of (6.37, 6.38, 6.41) and (6.42) follow the same simple pattern
as in for the dfs morphism, and are based directly on the definitions of the
corresponding functions in the respective models of search. The proof of
(6.40) requires the following two lemmas, which correspond to the lemmas
(6.35) and (6.36) used in the proof for (6.32) for dfs. These lemmas can as
well be proved by structural induction on forests:

bfs · fgraft = shuffle · (bfs ∗ bfs), (6.43)

bfs ∗ bfs = bfs · fmap bfs = mmap bfs · bfs. (6.44)

Thus, bfs is a morphism between the extended monads Forest and Matrix.

Another interesting monad for survey of search is the monad Set where the
answers are returned as sets. This monad would correspond to an algebraic
formulation of the least Herbrand models semantics of logic programs. The
operators in this monad are less operational; ‖ would be a union of the
least Herbrand models of answers to its two arguments, & would be their
intersection, and so on. For some collect1 and collect2 which remove the
information about the ordering and the multiplicity of answers, we have:

Forest monad

dfs�� ��
��
��
��
��
��
�

��
��
��
��
��
��
�

bfs ��
��

��
��

��
��

��
�

��
��

��
��

��
��

�

collect1

��

Stream monad

?
��

Matrix monad

collect2�� ��
��
��
��
��
��
�

��
��
��
��
��
��
�

Set monad

Concerning this chapter, the interesting question relating to the Set monad
is whether it plays a special role in the category of search models, that is,
whether it is a final object of the category. An object C in a category is
final if, for any other object D of the category, there is a unique morphism
D → C. However, there is no morphism from Stream to the Set monad,
because the depth-first model is not fair, and is consequently not complete.
As in Prolog, this search strategy can diverge and does not always return all
the answers implied by the program. The lack of this arrow in the diagram
above shows that Set is not final. In fact, the existence of a morphism from
a monad T to the Set monad can be taken as the semantic definition of
fairness in a search model corresponding to the extended monad T.

74



6.3 Initiality of the Forest monad

In this section we show the uniqueness of the homomorphism between the
Forest monad and any extended monad, and therefore conclude that Forest
is the initial object of the category of extended monads. This result follows
the properties (1–6) from the definition of the extended monad.

The proof of the uniqueness of homomorphisms between the Forest monad
and other extended monads is based on a generalisation from functions dfs
and bfs to a function h. Let us make the following recursive definition of a
polymorphic function h:

h :: Forest a→ T a

h xs = foldr (orT ) emptyT (map h1 xs), (a)

and a function h1:

h1 :: Tree a→ T a

h1 (Leaf x) = trueT x (b)

h1 (Fork xf ) = wrapT (h xf ). (c)

Because this is a definition of two functions by mutual structural recursion,
we can be sure that exactly one pair of functions h and h1 satisfies (a–c).

According to this definition, the function h recursively applies h1 to each of
the trees in the list that is the input forest; the function h1 converts each
tree into a type T of the respective goal monad – a Stream, Matrix , or other;
finally, h converts the resulting Stream T into a T , by folding the stream
with the union operator orT of the extended monad T . Presented with a
Leaf , the function h1 uses trueT of the corresponding monad to package an
answer in a unit Stream, Matrix , or other. Presented with a Forest xf, h1

converts it to T by applying the mutually recursive call to h to all the trees
in xf. In order to preserve the cost information from the input forest, at this
stage the function wrapT needs to be applied.

This definition of h and h1 is analogous to the definitions for dfs and bfs and
their auxiliary functions. As for those definitions, the relationship between

75



h and h1 is captured by the following equation:

h [t] = h1 t. (h)

We need to prove that the implementation of h, captured by equations (a–
c), implies the same structure preserving properties as respected by dfs and
bfs. Generalising to any extended monad T , these properties are:

h ·mapF f = mapT f · h, (i)

h · joinF = joinT · h ∗ h, (ii)

h · trueF = trueT , (iii)

h · emptyF = emptyT , (iv)

h · orF = orT · h× h, (v)

h · wrapF = wrapT · h, (vi)

where the pair-product h× h applies the function h to each element of the
pair, and is defined as having the type Forest a × Forest a → T a × T a;
also, as before, the horizontal composition h ∗ h is defined as:

h ∗ h :: Forest(Forest a)→ T (T a)

h ∗ h = h ·mapF h = mapT h · h. (6.45)

The list (i–vi) implicitly specifies the behaviour of h on &F through its
behaviour on mapF and joinF .

We now show that the definition of h, as given by equations (a–c), is equiv-
alent to the set of equations (iii–vi). In particular, we show that:

(iv, v)⇔ (a),

(iii)⇔ (b), and

(vi)⇔ (c).

Because exactly one h satisfies (a–c), and (a–c) are equivalent to (iii–vi), we
have that exactly one function, the same h, satisfies (iii–vi). Later, we prove
that such h also must satisfy (i,ii). For simplicity, we prove the equivalences
in one direction only, though the same arguments work backwards.

76



The proof for (iv, v)⇒(a) for the empty list follows from the definitions of
foldr and emptyF :

h [ ]

= h emptyF by (5.25)

= emptyT by (iv)

= foldr (orT ) emptyT (map h1 [ ]). by defn. foldr

For non-empty lists, it follows from (h) and the definitions of foldr and orF :

h [t1, t2, . . . , tn]

= h([t1] orF [t2] orT . . . orF [tn]) by (5.12)

= h[t1] orT h[t2] orT . . . orT h[tn] by (v)

= h1(t1) orT h1(t2) orT . . . orT h1(tn) by (h)

= foldr orT emptyT (map h1 [t1, t2, . . . , tn]). by defn. foldr

The proof for (iii) ⇒ (b) uses (h) and the definition of trueF :

h1 (Leaf x)

= h [Leaf x] by (h)

= h (trueF x) by defn. trueF

= trueT x. by (iii)

Finally, the proof of (vi) ⇒ (c) uses (h) and the definition of wrapF :

h1 (Fork ts)

= h [Fork ts ] by (h)

= h (wrapF ts) by defn. wrapF

= wrapT (h ts). by (vi)

We can now prove that h satisfies (i) and (ii), assuming both (a–c) and
(i–vi). We choose to first prove (ii). For this we need the following lemma,
which can be proved by structural induction on the tree t :

h (joinF [t]) = joinT ((h ∗ h) [t]). (6.46)

77



The base case uses (a) and (b), with the monad law (6.5) and ∗-definition (6.45):

h (joinF [Leaf xf ])

= h xf by defn. fgraft

= joinT (trueT (h xf )) by (6.5)

= joinT (h1 (Leaf (h xf ))) by (b)

= joinT (h [Leaf (h xf )]) by (a)

= joinT ((h ∗ h) [Leaf xf ]). by (6.45)

We have already proved that the properties (iii–vi) imply (a, b, c), so in
these proofs we may use any of those properties as well. The inductive case
uses the definitions of joinF , wrapF and (c), and property (vi):

h (joinF [Fork xff ])

= h (Fork (joinF xff )) by defn. fgraft

= wrapT (h (joinF xff )) by (c)

= wrapT (joinT ((h ∗ h) xff )) by ind. hyp.

= joinT (wrapF ((h ∗ h) xff )) by (vi)

= joinT ([(h ∗ h) xff ]). by defn. wrapF

Then the point-wise proof of (ii), which results from applying both sides of
the equation to the forest [t1, . . . , tn], is:

h (joinF [t1, . . . , tn])

= h ((joinF [t1]) orF . . . orF (joinF [tn])) by defn. fgraft

= (h(joinF [t1])) orT . . . orT (h(joinF [tn])) by (iv, v)

= (joinT ((h ∗ h)[t1])) orT . . . orT (join
T
((h ∗ h)[tn])) by (6.46)

= joinT (((h ∗ h)[t1]) orT . . . orT ((h ∗ h)[tn])) by (6.19)

= joinT ((h(mapF h)[t1])orT . . . orT (h(mapF h)[tn])) by (6.45)

= joinT (h ((mapF h [t1]) orF . . . orF (mapF h [tn]))) by (v)

= joinT (h (mapF h) [t1, . . . , tn]) by (6.47)

= joinT ((h ∗ h) [t1, . . . , tn]). by (6.45)

In the penultimate step we use the fact that mapF distributes over orF ,

78



which is simply concatenation ++:

mapF h (f1 ++ f2) = mapF h f1 ++ mapF h f2. (6.47)

The proof of (i) is structurally very similar to the proof of (ii) above. Again,
we need an additional lemma, proved by structural induction on the tree t:

h (mapF f [t]) = mapT f (h [t]). (6.48)

The proof of (i) is then:

h (mapFf [t1, . . . , tn])

= h (mapFf [t1] orF . . . orF mapFf [tn]) by defn. fmap

= h(mapFf [t1]) orT . . . orT h(mapFf [tn]) by (iv, v)

= mapTf (h [t1]) orT . . . orT mapTf (h [tn]) by (6.48)

= mapTf (h [t1] orT . . . orT h [tn]) by (6.47)

= mapTf (h [t1, . . . , tn]). by (v)

Finally, we can also prove that h preserves the behaviour of &:

h · (p1 �F p2)

= h · joinF ·mapF p2 · p1 by (5.13)

= joinF · h ∗ h ·mapF p2 · p1 by (ii)

= joinF · h ·mapF h ·mapF p2 · p1 by (6.45)

= joinF · h ·mapF (h · p2) · p1 by (2.2)

= joinF ·mapF (h · p2) · (h · p1) by (i)

= (h · p1)�F (h · p2). by (5.13)

The fact that the monad Forest is an initial object in the “category of
monads that describe the search part of logic programming” captures the
idea that the dfs and bfs morphisms are unique. Also, it implies that the list
of algebraic laws for operators which we provide is complete: any additional
laws would exclude some of the current members of the category of the search
monads. The Forest model satisfies exactly those laws that are satisfied by
every search model.

79



Chapter 7

Adequacy of the Embedding

In this chapter we describe how a particular selection of the algebraic laws
can be used to prove that our translation of logic program into Haskell gives
the same effect as LD-resolution. Since the laws we use are provably correct
for the implementation of our embedding, we use this connection to argue
for the correctness, that is, soundness and completeness, of our embedding.

7.1 Motivation for LD-simulation

We can view LD-resolution as a recipe for growing the LD-tree for a query,
starting with just the query itself, and iteratively adding further nodes.
Consider the definition of the append predicate presented earlier:

append(x, y, z) =

(x .= [ ] & y
.= z)

‖ (∃a, b, c. x .= [a|b] & z
.= [a|c] & append(b, y, c)).

One step of LD-resolution causes the growth of a single branch in the LD-
tree, corresponding to the application of a single clause to a non-empty
query in the tree. The effect is to move the frontier of the examined part of
the LD-tree by one node further away from the root.

Our aim is to manipulate predicates such as append using the algebraic

80



laws for our embedding, so that the transformations follow the growth of
the LD-tree. However, in our setting, we cannot simulate the growth of a
single branch, because all the clauses defining the same relation are joined
in the completed form of the predicate, and we have no means of applying
them separately. Nevertheless, we can simulate several LD-steps at once.
The evaluation which proceeds by a simultaneous growth of all the branches
from one node in the LD-tree is provably equivalent to the computation in
the embedding.

Our argument is based on the idea that one such “sprouting” of the LD-
tree is equivalent, according to our laws, to the unfolding of a query in the
embedding. Therefore the original query q is also inductively equal to q̄, the
result of unfolding it completely: but that complete unfolding q̄ represents
the set of answers computed by LD-resolution. The two predicates q and
q̄ must compute the same stream, matrix or forest of answers, since lazy
functional programming computes the same answers from equal expressions.

For example, the terminated LD-tree for the computation of the query
append(x, y, [1, 2]) is presented below:

append(x, y, [1, 2])

{x/[ ],y/[1,2]}
����
��
��
��
��
��
�

{x/[1|b1]} ����
��

��
��

��
��

��

� append(b1, y, [2])

{b1/[ ],y/[2]}
		���

��
��
��
��
��
��
��
�

{b1/[2|b2]} ����
��

��
��

��
��

��

� append(b2, y, [ ])

{b2/[ ],y/[ ]}
��

�

In the embedding, successful computations encounter equations, which re-
sult immediately in computed answer substitutions; these answers are, in
turn, stored in the forest which is the input to the rest of the computation,
which corresponds to the frontier of the LD-tree.

For the purposes of simulating LD-resolution in this chapter, we now wish
to keep the information about the frontier and all partial answers explicit.
The partial answers can be represented explicitly in the predicate, in a form

81



of a conjunction of .= equations prefixing each ‖ branch. For brevity, let us
refer to any such conjunction of equations:

x1
.= t1 & . . .& xn

.= tn,

where no xi appears in any tj , as an environment , and to each such xi
.= ti as

an assignment . This environment can be applied to subsequent computation
through the appropriate use of the law for the substitution of equals for
equals (4.25), the one-point law (4.12), and the distributivity laws for &

though ‖ and ∃ (4.6, 4.10). Through a series of applications of these laws,
a predicate is transformed from one equivalent form to another. We require
each of these forms to be a (possibly empty) disjunction of the form:

‖i (∃�xi. xi1
.= ti1 & . . .& xini

.= tini & r �ui),

where xi1
.= ti1 . . . xini

.= tini is an environment, and the list of terms �ui

contains none of xi1 . . . xini . We shall refer to this form of predicates as the
normal form.

The combination of laws used to transform one normal form into another
is operationally not the same as the executed evaluation of our embedding.
However, all the laws used are valid for the implementation of the embed-
ding in all the models. Therefore, we know that the abstract evaluation is
equivalent to the normal Haskell one in an extensional sense: they compute
provably equal collections of answers when provided with the same input.

Because of the left-most selection rule, all the nodes to the left of the cur-
rent one are fully explored, and in these branches the computational frontier
touches the leaves of the LD-tree. In the embedding these branches corre-
spond to the previously evaluated ‖ disjuncts.

7.2 Example of LD-simulation

We now show how to simulate the growth of the LD-tree for predicate:

append(x, y, [1, 2]),

82



using our algebraic laws. For simplicity, in this section we omit the ap-
plications of step, and address this issue later. After one unfolding of the
definition of append get the following predicate:

(x .= [ ] & y
.= [1, 2])

‖ (∃a, b, c. x .= [a|b] & [1, 2] .= [a|c] & append(b, y, c)).

The first disjunct in this predicate consists only of an environment, and
is therefore already in normal form, while the other disjunct needs to be
transformed to this form. We can first apply the ∃-related law (4.13) to
rename the bound variables a, b, c to fresh variable names a1, b1 and c1,
followed by an application of the equality law (4.22) to simplify [1, 2] .=
[a1|c1]. We then use the symmetry property of .= (4.26) to get:

(x .= [ ] & y
.= [1, 2])

‖ (∃a1, b1, c1. x
.= [a1|b1] & a1

.= 1 & c1
.= [2] & append(b1, y, c1)).

The second disjunct now has a conjunction of equations as a prefix; however,
some of these equalities can be simplified, and some local variables removed,
before the normal form is reached. We use the law for substitution of equals
for equals (4.28) to propagate the equalities:

(x .= [ ] & y
.= [1, 2])

‖ (∃a1, b1, c1. x
.= [1|b1] & a1

.= 1 & c1
.= [2] & append(b1, y, [2])),

and subsequently remove the unused local variables a1 and c1 with (4.14):

(x .= [ ] & y
.= [1, 2])

‖ (∃b1. x .= [1|b1] & append(b1, y, [2])).

This predicate is in normal form. It corresponds to the frontier of the partial
LD-tree for append(x, y, [1, 2]) after the sprouting of all the branches from
the root node. The first ‖ branch corresponds to the first successful branch
of the LD-tree, with the answer substitution {x/[ ], y/[1, 2]}. The second
‖ branch carries the environment with the partial answer x .= [1|b1] at the
front, and has the as yet unresolved parts of the predicate, corresponding
to the contents of the LD-node append(b1, y, [2]), as the rest.

83



We now repeat the sprouting process for the node append(b1, y, [2]) in the
second branch. After unfolding we get:

(x .= [ ] & y
.= [1, 2])

‖ (∃b1. x .= [1|b1] &

( (b1
.= [ ] & y

.= [2])

‖ (∃a, b, c. b1 .= [a|b] & [2] .= [a|c] & append(b, y, c)))).

We now need to distribute x .= [1|b1] through ‖ in the newly expanded part.
At this point there is a slight complication due to the one-sided distributivity
of &: we wish to rewrite x .= [1|b1] & (p1 ‖ p2) to (x .= [1|b1] & p1) ‖ (x .=
[1|b1] & p2), but & does not, in general, distribute through ‖ from the right.

Fortunately, in this case we are able to extend our set of laws with an
additional law (7.1), because & distributes through ‖ from the right when the
predicate e in the equation below is restricted to a conjunction of equations.
The law holds because such a predicate e can only have zero or one answers.
Rather than interrupt the flow of the example, we present the proof of this
law at the end of the present section:

e& (p1 ‖ p2) = (e& p1) ‖ (e& p2). (7.1)

Returning to the example and the predicate above, using (7.1), we can
distribute x .= [1|b1] through ‖. Then, using law (4.17), we distribute ∃b1
through ‖. Finally, we apply the law (4.4) about associativity of ‖ to get:

(x .= [ ] & y
.= [1, 2])

‖ (∃b1. x .= [1|b1] & b1
.= [ ] & y

.= [2])

‖ (∃b1, a, b, c. x .= [1|b1] & b1
.= [a|b] & [2] .= [a|c] & b1

.= [2|b] &
append(b, y, c)).

After simplification of last two ‖ branches and renaming of b (4.13), we get:

(x .= [ ] & y
.= [1, 2])

‖ (x .= [1] & y
.= [2])

‖ (∃b2. x .= [1, 2|b2] & append(b2, y, [ ])).

84



This normal form predicate corresponds to the LD-tree above after the
sprouting of the append(b1, y, [2]) node. The second branch corresponds
to a successfully terminated branch in the LD-tree, representing the answer
{x/[1], y/[2]}. In the third branch, the environment represents the combina-
tion of substitutions which label the corresponding branch of the LD-tree.

After unfolding append(b2, y, [ ]), and more simplification as before, we get:

(x .= [ ] & y
.= [1, 2])

‖ (x .= [1] & y
.= [2])

‖ (x .= [1, 2] & y
.= [ ])

‖ (∃a3, b3, c3. x
.= [1, 2, a3|b3] & [ ] .= [a3|c3] & append(b3, y, c3)).

Finally, in the last ‖ branch the unification [ ] .= [a3|c3] fails, and is thus
equivalent to false. This branch thus rewrites to:

(∃a3, b3, c3. x
.= [1, 2, a3|b3] & false & append(b3, y, c3)).

Using the law (4.3), stating that false is a left zero of &, we get:

(∃a3, b3, c3. x
.= [1, 2, a3|b3] & false)

In general case false is not a right zero of &, because in the computation
of p & false, the predicate p might diverge. However, if the left argument
is a conjunction of equations e, we know that e never diverges, and we can
prove:

e& false = false. (7.2)

Thus, using the law (7.2), and subsequently the laws (4.5) and (4.24) we
can now remove this branch, and terminate the computation. The result-
ing predicate is a list of environments, corresponding to the frontier of the
completely explored LD-tree:

(x .= [ ] & y
.= [1, 2])

‖ (x .= [1] & y
.= [2])

‖ (x .= [1, 2] & y
.= [ ]).

85



In this example, for brevity we have omitted step from all predicates, even
though it occurs at each unfolding of a predicate definition. With step, the
normal form of a predicate would conform to the grammar:

nf → (∃ �xn. x1
.= t1 & . . .& xn

.= tn & r �tm)

| step (‖i nfi).

This form retains the structure of the LD-tree. It slightly complicates the
presentation, but not the argument.

Returning to the proof of law (7.1), we need to consider two cases in the
proof, since for some input σ, e(σ) has either one or zero solutions. If e(σ)
has exactly one solution, we can write e(σ) = unitT (σ′), for any search
model T . We use the notation from Chapter 6, so & in T is �T . Then:

(e�T p)(σ)

= (joinT ·mapT p · e)(σ) by defn. of �T

= (joinT ·mapT p · unitT )(σ′) by e(σ) = unitT (σ′)

= p(σ′) by (6.3) and (6.5)

so, in the forest model, and similarly in the others, for such e and σ, we get:

(e�F (p1 orF p2))(σ)

= (p1 orF p2)(σ′) by eqn. above

= p1(σ′) ++ p2(σ′) by defn. of orF

= (e�F p1)(σ) ++ (e�T p2)(σ) by eqn. above

= ((e�F p1) orF (e�F p2))(σ) by defn. of orF

If e has no solutions, we can write e(σ) = emptyT (σ) for any search model,
that is, any extended monad T , and we use the similar argument:

(e�T p)(σ)

= (joinT ·mapT p · e)(σ) by defn. of �T

= (joinT ·mapT p · emptyT )(σ) by e = emptyT

= emptyT (σ). by (6.21)

86



In the last step we use the law for extended monads which states that emptyT

is a left zero for �T . For forests we then have the pointwise proof:

(e�F (p1 orF p2))(σ)

= emptyF (σ) by eqn. above

= emptyF (σ) ++ emptyF (σ) by defn. of ++ and emptyF

= (e�F p1)(σ) ++ (e�F p2)(σ) by eqn. above

= ((e�F p1) orF (e�F p2))(σ) by defn. of orF

We now proceed to formalise the approach presented in this example.

7.3 Soundness and completeness of the embedding

The contents of this section are closely related to Clark’s [26] treatment of
the soundness and completeness (for positive literals) of the evaluation of
completed logic programs. This is not surprising, since we both deal with
the semantics of completed logic programs and the correspondence of their
evaluation to LD-resolution. However, we have different motivations for this
approach.

Clark arrives at the completed form of a logic program and draws a con-
nection between LD-resolution in Horn clause logic and deduction in first
order logic in order to justify the use of the negation-as-failure inference rule
with respect to truth-functional semantics. We arrive at the completed form
of a logic program and draw a connection between LD-resolution and lazy
evaluation of a Haskell programs in order to justify the use of equational
reasoning about logic programs. We shall return to the differences in our
approaches at the end of this section.

The example in the previous section makes heavy use of our laws for .=;
they are used for inference about equalities in order to emulate unification.
According to Clark [26], such use of an identity theory is correct:

Lemma 7.1

For any relation r, if r(t′1, . . . , t
′
n) unifies with r(t′′1, . . . , t

′′
n), with strong mgu

87



θ = {x1/t1, . . . xk/tk}, then the following two conjunctions of equations can
be proved equivalent according to our algebraic laws:

(t′1
.= t′′1 & . . .& t′n

.= t′′n) = (x1
.= t1 & . . .& xk

.= tk) (7.3)

On the other hand, if r(t′1, . . . , t
′
n) does not unify with r(t′′1, . . . , t

′′
n), then

we have:

(t′1
.= t′′1 & . . .& t′k

.= t′′k) = false. (7.4)

In other words, the predicate on the right, representing either the substitu-
tion θ or the failed result false, can be arrived at either by a simultaneous
unification of all the term pairs (t′i, t

′′
i ), or by rewriting the conjunction of

all equations on the left using our .=-related laws.

According to our laws, these two equations can be proved using induction on
the number of steps in the unification algorithm, and relating each of these
steps to the .=-laws. This is not surprising, since the equality-related laws
were defined exactly so that they would correspond closely to the unification
algorithm described in Chapter 2. In the induction proof, we can use the
law (4.22) when the unification algorithm breaks composite terms apart, we
use the substitution law (4.28) to apply the computed bindings to the rest of
the term, and the laws (4.23–4.24) to give a contradiction when unification
would fail.

We proceed to prove that one LD-sprouting step corresponds to a transfor-
mation, using our algebraic laws, of a predicate. In order to simplify the
proofs that follow, we first establish some notation. The normal form of a
predicate, introduced earlier in this chapter, is crucial for the formalisation
of the sprouting steps in the embedding. We shall abbreviate the normal
form: ‖i (∃�xi. xi1

.= ti1 & . . .& xini

.= tini & qi) as:

‖i (∃�x′
i. eθi

& qi).

Here �x′
i denotes the list of all the local variables of the ith disjunct, and eθi

is
the environment representing the substitution θi, which corresponds to the
conjunction of assignments xi1

.= ti1 & . . .&xini

.= tini . As before, the query

88



qi is the conjunction which corresponds to the remaining computation. The
empty normal form is equivalent to false.

Recall from the definition of SLD-resolution (from Chapter 2) that we use
the pair 〈q; θ〉 to denote the query q in the environment θ, where, if q is non-
empty, that one atom is selected in it. Since we know that a conjunction
of equations can be used to represent environments and substitutions, we
shall now replace θ with eθ, where e is an environment representing the
substitution θ. According to the definition of an LD-resolvent, where a
restriction to a left-most selection rule has been imposed, the LD-resolvent
〈q′, q; eθη〉 of a pair 〈l, q; eθ〉, with l the selected atom, and the clause c, is:

〈l, q; eθ〉 −→
SLD

〈q′, q; eθη〉,

where h← q′ is a variant of c that is variable disjoint with l, q and eθ; and
lθ and h unify with the mgu η.

This presentation of LD-resolution is convenient for our purposes because
it is very close to the normal form of a predicate. In the completed form,
where the conjunctions and existential quantifications of local variables are
made explicit, we may write this LD-step as:

(∃�x. eθ & l & q) −→
SLD

(∃�x, �x′. eθη & q′ & q),

Three comments regarding this alternative notation: First, the placement of
& between the environment and the rest of the query is justified both logi-
cally in the completed form of the predicate, and also by the implementation
of our embedding. In the embedding, the interaction of .= and & operators is
such that, during evaluation, the environments eθ and eθη are applied to the
rest of the query. This interaction is recorded appropriately with our laws.
Second, since we assume a left-most selection rule, the queries to the left of
l will already be computed when we select l, and all the information these
computed predicates contain is represented by the environment eθ. Third,
the syntactic constraint that h ← q′ must be variable disjoint with l, q and
eθ can be satisfied by appropriately renaming the local variables of q′. These
renamed local variables are exactly the variables �x′.

An LD-sprouting step from q results in a disjunction of k queries derivable

89



from q by resolving on the selected literal. In our case, this selected literal
must be l, the left-most predicate after the environment. Then, a sprouting
step, denoted as �−→

SLD
, is defined as:

(∃�x. eθ & l & q) �−→
SLD

(∃�x, �x1
′. eθη′

1
& q′

1 & q)

‖ . . .

‖ (∃�x, �xk
′. eθη′

k
& q′

k & q),

where the elements �xi, eθη′
i
and q′

i of each disjunct are derived as for a single
LD-step. If there are no derivable queries from q by resolving on the selected
literal, that is, if k = 0, we have:

(∃�x. eθ & l & q) �−→
SLD

false.

Both of these derivation steps can be achieved by equational rewriting using
the certain sequences of algebraic laws. So we can prove:

Lemma 7.2

A query q is equivalent, according to our algebraic laws, to the disjunction
of queries derivable from q by LD-resolving on the left-most literal.

In the proof of this lemma, we need to show that the algebraic laws can
simulate LD-sprouting in two cases, corresponding to the definition above:
one where the disjunctions of derivable queries is non-empty, and the other
one where it is empty. In case of an unsuccessful sprouting, that is, if k = 0:

∃�x. (eθ & l & q)

{literal l does not match any clause}
= ∃�x. (eθ & false & q)

{false is a left zero for & , law (4.3)}
= ∃�x. (eθ & false)

{false is a right zero for & in equations such as e& p, law (7.2)}
= ∃�x. (false)

{�x does not appear in false, law (4.15)}
= false.

90



In case of a successful sprouting, that is, if k �= 0, we have:

∃�x. (eθ & l & q)

{selecting l and expanding it to general form}
= ∃�x. (eθ & ((∃�x1. eη1 & q1) ‖ . . . ‖ (∃�xk. eηk

& qk)) & q)

{variable renaming, law (4.13)}
= ∃�x. (eθ & (∃�x′

1. (eη′
1
& q′

1) ‖ . . . ‖ (∃�x′
k. eη′

k
& q′

k)) & q)

{& distributes through ‖ from the left for e-predicates, law (7.1)}
= ∃�x. (((eθ & (∃�x′

1. eη′
1
& q′

1)) ‖ . . . ‖ (eθ & (∃�x′
k. eη′

k
& q′

k))) & q)

{∃ distributes through & , law (4.15)}
= ∃�x. (((∃�x′

1. eθ & eη′
1
& q′

1) ‖ . . . ‖ (∃�x′
k. eθ & eη′

k
& q′

k)) & q)

{right distributivity of & through ‖ , law (4.6)}
= ∃�x. ((∃�x′

1. eθ & eη′
1
& q′

1 & q) ‖ . . . ‖ (∃�x′
k. eθ & eη′

k
& q′

k & q))

{∃ distributes through ‖ , law (4.17)}
= (∃�x, �x′

1. eθ & eη′
1
& q′

1 & q) ‖ . . . ‖ (∃�x, �x′
k. eθ & eη′

k
& q′

k & q).

Now we can evaluate, separately in each new query, the left-most literal from
q′
i in the respective new environments.

Since LD-derivations are obtained by a repeating application of LD-steps, we
can simulate LD-derivations by grouping the single LD-steps into sprouting
steps, and simulating the sprouting steps by algebraic rewriting according to
Lemma 7.2. By induction, we can prove that the construction of a complete
LD-evaluation tree is tantamount to a rewriting proof in the embedding.
But the algebraic laws which guide this rewriting are provably correct with
respect to the execution of the embedding. So we have:

Theorem 7.1

For any computed answer substitution θ|Var(q) resulting from an LD-derivation
〈q; ε〉−→

SLD

∗〈�; θ〉, there is a corresponding answer substitution θ′ returned by
the embedding, such that θ and θ′ are equal up to renaming of automatically
generated variables.

In this proof, let q̄ represent the frontier of the completed LD-tree for q.

91



If the query for q results in k answers θi, where 1 ≤ i ≤ k, then q̄ can be
represented as the normal form predicate:

∃�x1. eθ1 ‖ · · · ‖ ∃�xk. eθk
.

Each of these disjuncts consist only of an existentially quantified environ-
ment, corresponding to one computed instance qθi, or answer substitution
θi|Var(q), of the LD-derivation from the query q.

Given q and q̄ as above, we simply use induction on the number of sproutings
in an LD-tree, and apply Lemma 7.2 to prove that

q −→
SLD

∗ q̄ ⇔ q = q̄.

Consequently, also q(ε) = q̄(ε), so if the embedding computes the an-
swers {θ1, . . . θk} for q(ε), they are the same as the ones computed by LD-
resolution for q(ε). Not only do q(ε) and q̄(ε) contain the same answers, they
also compute the same stream, matrix or forest of answers in the respective
implementations of the embedding. So the results returned by the embed-
ding are presented in the same order, under any chosen search strategy, as
the answers computed by LD-resolution.

We stress again that even though the computation of q(ε) in the embedding
does not follow this process, it does give the same answers. This result
holds for any search strategy chosen for the traversal of the LD-tree, since
the algebraic laws used for the simulation hold in all search models of the
embedding.

The Theorem 7.1 is important because it allows us to prove the adequacy of
the embedding, under any search strategy and allowing recursive predicates.
According to Theorem 2.1 LD-resolution is sound, and according to Theorem
2.2, it is complete. Since the answers computed by the evaluation of our
embedding are the same as the ones computed by LD-resolution, we have:

Theorem 7.2

The embedding is sound and complete with respect to the standard declar-
ative semantics of logic programming.

92



The treatment above deals only with the completeness for evaluations sprout-
ing from positive literals. Even though we have an operator not which cor-
responds to negation of a predicate, here we choose to not elaborate on the
semantics of its evaluation. It suffices to say that, since we implement it as
a simple negation as failure rule, we adopt the soundness results from Clark
and follow the same restrictions. In order to allow recursive predicates we
only consider evaluation of ground negated literals, that is, of literals which
become ground in the given environment. Non-ground literals could possi-
bly be dealt with by means of some residuation-like technique, but we have
not explored this possibility.

As mentioned earlier, our proof of soundness and completeness is reminiscent
of Clark’s original treatment of the correctness of evaluation of completed
logic programs. We now stress our differences. Clark sees the LD-tree as a
structural representation of a natural deduction style proof, where alterna-
tives in the proof space become explicit disjunction and and match-failures
become false equalities. Consequently his logic operators ∧, ∨ and ∃ obey
all the standard laws of predicate calculus. His predicates are simply first-
order logical formulae. On the other hand, our operators &, ‖ and ∃ are, in
fact, Haskell functions which are more restricted than their logic counter-
parts, and our predicates have an operational semantics which corresponds
to LD-resolution. Therefore, as we know, & is not commutative, and does
not always distribute through ‖ from the left. Also, we choose to implement
& as sequential, rather than parallel, composition – and for this reason we
cannot allow a random selection rule. Clark’s declarative approach does not
have such restrictions.

In this operational respect, our treatment is more related to an approach
called “Formulas as Program” taken by Apt and Bezem in [5]. In the next
section we relate our treatment to this work, and use this connection as an
alternative proof of adequacy of the embedding.

7.4 Relation to Formulas as Programs

In [5] Apt and Bezem provide a computational interpretation of first-order
formulae over arbitrary interpretations. This is a generalisation of our ap-

93



proach, since we provide an operational semantics for a subset of first-order
logical formulae over a fixed interpretation of all ground terms of the given
language. Both our restrictions follow from the standard logic programming
tradition. With respect to the approach of Formulas as Programs, our first
restriction is primarily of syntactical nature, while the second has signifi-
cant semantical consequences: it constrains us to Herbrand models, but this
restriction allows us to guarantee a decidable and computationally efficient
notion of equality, without forcing us to restrict the equality predicates to
ground assignments or ground tests.

In this work, as in ours, first-order formulae are viewed as executable pro-
grams, searching for a satisfying valuation for the formula in question. The
operational semantics is given in terms of evaluation trees for a formula and
a given input environment. In contrast, our operational semantics is given
by executable Haskell code. The main result in [5] states that this com-
putational mechanism is sound, in the sense that every computed answer
valuation of a query validates it. Below we prove that, with appropriate re-
strictions on the notion of equality, our semantics are equivalent. Therefore
we may conclude that also our work is sound.

The generalisation from Herbrand models to arbitrary interpretations is
achieved in [5] by lifting the notion of substitutions to valuations. Val-
uations are, like substitutions, defined as single-valued sets of pairs x/d,
where x is a variable, but d can be an element of an arbitrary domain, so
not necessarily a term. The concepts of empty valuations, compositions
of valuations, and of a subsumption ordering on valuations, are parallel to
those for substitutions.

In [5] the operational semantics of a formula is defined in terms of a tree
[φ]α, depending on a formula φ and the initial valuation α. The root and
all internal nodes of the evaluation tree are labelled with a pair consisting
of a formula and a valuation, and the leaves of the tree are labelled with
either: error , corresponding to a diverging computation; fail , corresponding
to a failed computation; or a valuation α′, corresponding to a successful
computation and containing a satisfying valuation of the free variables of
the root formula.

For example, the evaluation tree for the empty conjunction, denoted as �,

94



is depicted below:

�, α

��
α

This empty conjunction � corresponds to the predicate true in our em-
bedding, and as our computation of true, this tree just returns the input
valuation. However, in our setting the return type is always explicitly a
collection, while here that information is implicitly given by the fact that
the tree might have several branches, each possibly resulting in a successful
valuation.

Such evaluation trees are defined for all formulas, which are inductively
defined as follows. All formulas are conjunctions; this corresponds to the
form of queries in logic programming. As seen above, the empty conjunction
is denoted as �, and in the non-empty case every conjunct is either an
atomic formula or one of the following: disjunction, conjunction, implication,
negation, or an existential quantification of another formula. The atomic
formulas include equations of terms s = t. The operational semantics is
defined in terms of lexicographic induction on the pairs (s1, s2) where, for
any formula φ1∧ψ, s1 is the size of the whole formula and s2 is the size of φ1.
We claim that this inductive definition corresponds to our implementation of
operators in the embedding, when valuations are restricted to substitutions
and the notion of equality is restricted to “is unifiable with”:

Lemma 7.3

Given a formula φ and substitution α, and a translation p of φ to a predicate
in our embedding. If the notion of equality is restricted to “is unifiable
with”, then each state in the evaluation tree [φ]α corresponds to a state in
the Haskell evaluation of p(α).

The proof is by induction on the structure of the formula φ, following the
definitions of the evaluation trees.

The base case concerns the leaves of the evaluation tree, and we argue that
for each there exists a corresponding result of a Haskell program in our

95



setting. When interpretations are restricted to free term algebras, the no-
tion of valuations coincides with that of substitutions, so a successful leaf
in the evaluation tree corresponds a successful answer substitution in the
computation of embedding. In our setting an invariably failing computation
corresponds to the predicate false, which is the zero of each monad and
therefore terminates the ‖ branch where it occurs. Finally, the operational
meaning of error in our setting is an infinite, or diverging, computation.

The inductive step has six cases, one for each type of conjunctions: where
the selected formula is an atom (i), a disjunction (ii), a conjunction (iii),
implication (iv), negation (v) or existential quantification (vi).

The (i) is the most interesting case, since this is where the restriction from
arbitrary algebras to the free algebra of terms is most significant. When
interpretations are not restricted to term algebras, the equality atoms are
not guaranteed to be safely evaluated, since equality may involve solving a
test for satisfiability of a sequence of constraints, which may be undecidable.
Therefore, in [5] computation of = atoms is restricted to a form where this
may not happen, as described below.

The concepts of an α-closed term and an α-assignment are, in turn, a gener-
alisation of our ground terms, and a restriction of our .=-predicates. If α is a
valuation, a term t is said to be α-closed if every variable in t gets a value in
α. The result of applying the valuation α of some expression E is denoted
as Eα and is obtained by replacing each α-closed term t by tα. Further, an
α-assignment is an equation s = t where one side is a variable that is not
α-closed, and the other a term which is α-closed, that is, “ground”.

The four trees below show the evaluation of formulas where the left-most
literal is an atom. As seen from the trees, also this framework imposes a
left-most selection rule. We expand on the four conditions below.

A ∧ ψ, α

cond 1
��

[ψ]α

A ∧ ψ, α

cond 2
��

fail

A ∧ ψ, α

cond 3
��

error

A ∧ ψ, α

cond 4
��

[ψ]α′

Conditions 1 and 2 require that the atom A is α-closed and respectively true
or false. In our setting, this corresponds to terms that evaluate to ground

96



terms in the input environment; this results either in success, with no new
additions to the resulting environment for the rest of the computation, or
in failure.

Conditions 3 and 4 correspond to cases where the atom A is not α-closed,
and where in the first case it is not an α-assignment while in the second
it is. The tree corresponding to condition 3 is one where our restriction
the Herbrand algebras allows us a more liberal treatment of atoms; we may
have atoms with logical variables which get values later in the computation,
and do not have to diverge in this case. The second tree assumes that A
is an α-assignment, say, x = t. Here the rest of the evaluation consists of
evaluating φ in the new environment α′, which corresponds to α extended
with the pair x/t. In our setting, the computation of (x .= t & p)(θ) also
computes p in the environment θ∪{x/t}, since we know that x .= t succeeds
whenever x does not appear in t. Again, we do not need to require that tθ
is ground.

The cases (ii) and (iii) are quite straightforward. The evaluation trees of ∨
and ∧ are depicted below. They have the same effect as our implementations
of ‖ and &, where the first uses concatenation to evaluate the two branches
independently, while the second behaves as sequential composition:

(φ1 ∨ φ2) ∧ ψ, α



��
��
��
��
��
��

���
��

��
��

��
��

�

[φ1 ∧ ψ]α [φ2 ∧ ψ]α

(φ1 ∧ φ2) ∧ ψ, α

��

[φ1 ∧ (φ2 ∧ ψ)]α

In the next three trees we see the evaluation of implication, case (iv). Con-
ditions 5 and 6 require that φ1 is α-closed and respectively failed (containing
only failed leaves) or successful (containing at least one success leaf). The
last tree, with condition 7, covers all other cases.

(φ1 → φ2) ∧ ψ, α

cond 5
��

[ψ]α

(φ1 → φ2) ∧ ψ, α

cond 6
��

[φ2 ∧ ψ]α

(φ1 → φ2) ∧ ψ, α

cond 7
��

error

In the embedding we do not have →, but we have negation and disjunction,
and the combination of these operators gives exactly the same operational

97



behaviour as these trees for →. By law (4.6), we know that the evaluation
of (not p1 ‖ p2) & p3 is equivalent to evaluating (not p1 & p3) ‖ (p2 & p3).
These two ‖ branches are evaluated independently, and they correspond to
the first and second tree above.

We only compute negation of ground literals, but the same restriction is
present in the evaluation trees above; the two successful trees only allow the
evaluation of a α-closed negated formula. Such evaluation succeeds or fails
without extending the environment, and that is why both ψ and φ2 ∧ ψ are
evaluated in the old α environment.

The next three trees deal with case (v), the “negation as failure” rule:

¬φ ∧ ψ, α

cond 8
��

[ψ]α

¬φ ∧ ψ, α

cond 9
��

fail

¬φ ∧ ψ, α

cond 10
��

error

Conditions 8 and 9 require that φ is α-closed (the same restriction about
ground negation as above), and in the first condition [φ]α is assumed to
contain only failure leaves while in the second it contains at least one success
leaf. In the third tree the computation diverges due to non-ground negation.
Our implementation behaves the same in all three cases.

For case (vi), the evaluation tree of ∃ is presented below:

∃x. φ ∧ ψ, α

cond 11
��

[φ ∧ ψ]α

Condition 11 imposes syntactic requirements about the freshness of the vari-
able x: it must not occur neither in the domain of α nor in φ. This is as-
sumed fixed via appropriate renaming, which is exactly what we do in our
implementation of ∃.

So we know that our embedding simulates evaluation trees, under described
restrictions on the permitted interpretations and the use of .=. This gives
us an alternative proof of the soundness of the embedding, because the

98



following soundness theorem has been proved for evaluation trees: Let φ be
a formula and α a valuation. If [φ]α contains a success leaf labelled with α′,
then α′ extends α and ∀(φα) is true. If [φ]α is failed, then ∃(φα) is false.
The proof of this theorem is by lexicographic induction on the structure of
the computation.

Regarding program transformation, the notion of equivalence between two
formulas in [5] is based on their evaluation trees, similarly to our equal-
ity between predicates. Two formulas are equivalent if both computation
trees are successful and return the same set of successful leaves, or if both
computation trees are failed. In our setting, the equivalence between two
formulas is the precise notion of equivalence between two Haskell programs,
and as we have shown, it may be used for a complete axiomatisation of the
equivalence relation induced by the computation mechanism. This axioma-
tisation transfers to the evaluation mechanism of Formulas as Programs in
the restricted case of logic programs.

99



Chapter 8

Properties of Predicates

Certain universal properties are satisfied by all predicates, whatever the un-
derlying search model may be. In this chapter we identify such properties
and show that they are respected by all predicates defined using the oper-
ators of our embedding. We also show that, because of our function step,
recursive definitions of predicates have a unique fixed point.

8.1 Non-recursive predicates

The implementation of the basic operators of the embedding can be used
to recognise the characteristic properties which cause predicates in the em-
bedding, such as append , to behave like a corresponding Prolog relation.
We call these characteristics the healthiness properties of predicates in the
embedding. We state and prove three such properties: all predicates are con-
servative (8.1), monotonic (8.2) and oblivious (8.3), in the following sense:

σ′ ∈ p(σ)⇒ σ � σ′, (8.1)

σ1 � σ2 ⇒ p(σ1) �∗ p(σ2), (8.2)

t1(σ) = t2(σ)⇒ (r t1)(σ) = (r t2)(σ). (8.3)

It is exactly these three properties that we need for our treatment of the
denotational semantics of predicates, and the property (8.3) was also used

100



in our argument for the correctness of the Leibnitz law (4.28). The relation
�∗ used above is the subsumption relation on collections of substitutions,
defined in Chapter 2, where for two sets of substitutions S and S′, S�∗S

′

holds iff for every σ′ ∈ S′ there exists a more general σ ∈ S.

Predicates are conservative because each substitution σ′ in the answer re-
turned by a predicate p(σ) refines the input substitution σ. Predicates are
monotonic in their input, because the more refined the input substitution
to a predicate, the more refined will be each of the answers. Finally, re-
lations r definable with our operators do not differentiate between input
arguments which have the same value under the input substitution, so they
are oblivious to argument names.

Our predicates, in the most general model, return forests. Forests, in
essence, are trees with an arbitrary finite branching factor. In this sec-
tion we consider all such trees that have finite depth. For finite trees, each
of these properties can be proved by induction over the structure of predi-
cate expressions. In the next section we show that these properties are such
that we may extend this argument to infinitely deep trees as well. In the
rest of this chapter we use “predicate” to mean predicate definable in the
embedding, that is, a Haskell function built from from .=-predicates, true
and false, and possibly other healthy primitives, and with &, ‖, not and ∃
as the predicate combinators.

Lemma 8.1

All non-recursive predicates definable in terms of the operators are conser-
vative: For any non-recursive predicate p and substitutions σ and σ′, if σ′ is
one of the answers in the collection computed by p(σ), then σ′is a refinement
of σ. That is:

σ′ ∈ p(σ)⇒ σ � σ′.

In the proof of this lemma, the basis of induction concerns atomic predi-
cates, which are either .=-predicates, or true or false. In case of equations,
the refinement holds by our definition of the .= operator. All equations
compute the unification of two terms relative to the input substitution. If

101



the unification fails, the result is the empty list of answers, so the property
holds trivially. If the unification succeeds, the resulting substitution must be
a refinement of the input. In case of true the collection of answers returned
is the singleton containing the input answer, so the refinement is σ′ = σε.
In case of false the collection of answers returned is empty, so the property
holds trivially.

For the inductive step, we assume that the property holds for the predicates
p1 and p2, so each element in the collections of answers to these predicates
must refine the input substitution. The operator ‖ preserves the conservative
property since its collection of answers is the concatenation (or merging, in
the bfs model) of the collections of answers to the two disjuncts and thus
contains the same elements. By the induction hypothesis, each of these
elements refines the input substitution.

The operator & preserves the property since in (p1 &p2)(σ) it first computes
p1(σ), in which each element σ′ refines σ by the induction hypothesis, and
then for each σ′ it computes p2(σ′), where each element σ′′ refines σ′ again
by the hypothesis. But refinement is a transitive relation on substitutions,
so each σ′′ also refines σ.

We write (∃x. p1) as a shorthand for exists (λx. p1). Here exists provides
a fresh variable x′ to the λ-expression, so in effect it replaces the bound
variable x with a fresh variable x′ in p1, let us denote this renamed predicate
as p′

1. By the induction hypothesis, each answer σ′ to p′
1(σ) refines the input

σ. Depending on whether we standardise the answers or not, ∃ either leaves
this substitution unchanged, or removes the variable x′ from it. In the first
case we already have that σ � σ′. In the second case, make σ′′ = dropx′(σ′).
Since x �∈ Dom(σ), we still have σ � σ′′.

Lemma 8.2

All non-recursive predicates definable in terms of the operators are mono-
tonic: For any non-recursive predicate p and input substitutions σ1 and σ2,
if σ2 refines σ1, then also every answer of p(σ2) refines some answer of p(σ1).
That is:

σ1 � σ2 ⇒ p(σ1) �∗ p(σ2).

102



The base case of induction again concerns .= predicates and true and false.
The property holds trivially for true and false, because true returns the
unchanged input substitution in a singleton, and false return the empty
collection of answers.

In case of (t1
.= t2), we may use Lemma 7.1 from the previous chapter,

stating that (t1
.= t2) is equivalent to (x1

.= t′1 & . . . & xk
.= t′k), if the

unification of t1 and t2 succeeds, and to false, if it fails. As before, xi

denotes a variable and t′i denotes a term. If we assume σ1 � σ2, we may
write σ2 = σ1η. The relationship between:

(x1
.= t′1 & . . .& xk

.= t′k)(σ1) and (x1
.= t′1 & . . .& xk

.= t′k)(σ1η)

must then be one of the following. If the first query returns the empty
collection of answers, it is because one or more xi

.= t′i assignments were
inconsistent with σ1. But they must also be inconsistent with σ1η, so the
property holds trivially. If the first query returns a non-empty collection,
it will return a singleton with σ′

1 as its only solution, where σ′
1 consists

of σ1 extended with some subset of {x1/t
′
1, . . . , xk/t

′
k}, with the duplicated

bindings removed from this set. The collection returned by the second query
will either be a singleton containing the same answer, or be empty because
of some inconsistency between {x1/t

′
1, . . . , xk/t

′
k} and η. In both cases the

relation (t1
.= t2)(σ1) �∗ (t1

.= t2)(σ2) holds.

For the inductive step, assuming that the predicates p1 and p2 are monotonic
in the sense above, we show that the remaining operators preserve the prop-
erty. For ‖, the collections of answers to (p1 ‖ p2)(σ1) and (p1 ‖ p2)(σ2) are,
respectively, the concatenation of the collections of answers to the queries
p1(σ1) and p2(σ1), and p1(σ2) and p2(σ2). By induction hypothesis each of
the elements of p1(σ2) and p2(σ2) refine some element in p1(σ1) and p2(σ1),
respectively, so this property holds for the union of these collections as well.

Further, for (p1 & p2)(σ1) and (p1 & p2)(σ2), by the hypothesis we have that
each answer σ′

2 in the collection returned by p1(σ2) refines some answer σ′
1

from p1(σ1). So when p2 is mapped over these σ′
2 and σ′

1, by the induction
hypothesis each resulting substitution in p2(σ′

2) must refine some substitu-
tion in the collection returned by p2(σ′

1).

103



Finally, for ∃x. p1, by the hypothesis each answer σ′
2 to p1(σ2) refines some

answer σ′
1 in p1(σ1). Let σ′

2 = σ′
1η; due to ∃x, renaming of x to fresh x′

in p1(σ2) results in σ′
2, where either σ′

1 or η (or none) are correspondingly
renamed. If the change affects σ′

1, then obviously the answer σ′′
1 to ∃x. p1(σ1)

will change the same way, so σ′′
2 refines σ′′

1 . If it affects η, the shared bindings
stay the same so σ′′

2 is still a refinement of σ′
1, which is identical to σ′′

1 .

Lemma 8.3

All non-recursive predicates definable in terms of the operators are oblivious:
For any non-recursive predicate r t, terms t1 and t2, and input substitution
σ, if t1 and t2 evaluate to the same term under substitution σ, the query
(r t1)(σ) is equivalent to (r t2)(σ). That is:

t1(σ) = t2(σ)⇒ (r t1)(σ) = (r t2)(σ).

In other words, predicates compute the same answer for all arguments that
have same values under the input substitutions. The reason for this is
that our unification operator computes relative to the input substitution,
so the difference is annulled whenever we get to the part of the computation
that leads to new components in the answers. The other three combina-
tors merely propagate the relationship down to unification. For example, if
t1σ = t2σ, then obviously (r1 t1 ‖ r2 t1)(σ) will compute the same answers
as (r1 t2 ‖ r2 t2)(σ).

8.2 Healthiness of recursive predicates

Using the forest model, we now show that the properties considered in the
previous section extend to recursive predicates. The argument presented
in this section has two parts. First we show that all predicates are such
that the healthiness properties are preserved for arbitrary large finite trees.
Then we show that the properties we consider here are such that we may
generalise their preservation from arbitrary large finite trees to infinite trees.

Some care must be taken here, because the transition to from finite to in-
finite trees does not hold for many important properties for predicates: for

104



example, in general completeness cannot be proved this way, which is why
we base our completeness proof on simulating LD-resolution.

The proof of the first part is based on computation induction, where we show
that the computation preserves the healthiness properties in each step, so if
a predicate is healthy up to n steps of computation, it will also be healthy
for n + 1 steps. If we relate this to our general model, the steps of the
computation correspond to the depth of the tree for the query. This means
that if we can prove that the properties propagate in this way, we can assume
that they hold for all queries resulting in an arbitrarily big finite search tree.

Consider a recursively defined predicate r x. We may assume that such
predicates are defined as:

r x = step (F(r) x),

where F is some predicate expression built from the relation r, other healthy
predicates previously defined in the program, and atomic predicates .=, true
and false, using combinators &, ‖, not and ∃. We do not wish to restrict the
terms on the right to be smaller than on the left, since this may not always
be the case. For example, the definition (3.1) of the recursive predicate
append can alternatively be written as:

append(p, q, r) = step (F(append)(p, q, r))

where F(app)(p, q, r) =

(p .= nil & q
.= r)

‖ (∃x, y, z. p .= [x|y] & r
.= [x|z] & app(y, q, z)).

For simplicity, we only discuss linear recursion, where F has at most one
recursive call. However, the argument extends to the non-linear case. The
first auxiliary result we need is:

Lemma 8.4

F is non-destructive. That is, the partial answers in the first n levels in the
search tree of (F(p))(σ) depend only on the partial answers from the first n
levels in the search tree of p(σ).

105



The proof is by induction on the structure of F . For the induction base,
F(p) must either be an equation or true or false, and therefore does not
have any constituent predicates, so the lemma holds trivially in this case.

For the inductive step, we assume that the property holds for p1 and p2.
Then, F(p) is either a disjunction p1 ‖ p2, a conjunction p1 & p2, a negation
not p1 or a quantified predicate ∃x. p1. The combinators ‖, not and ∃
preserve the depth of the answers in the search tree, while the answers
resulting from & have depth equal to the sum of the depths of answers of
the two conjuncts. So all the answers to (F(p))(σ) on the level n come
from answers to p(σ) on levels n or less. By the induction hypothesis, these
answers only depend on levels n or less, so we are done.

Letting healthy stand for any the three healthiness properties from the pre-
vious section, we are now ready to prove that if a predicate returns healthy
answers up to level n in the search tree, then it also returns healthy answers
for level n + 1. This argument is based on the behaviour of step function,
which pushes each answer one level down the tree.

Lemma 8.5

If r x = step (F(r) x) and the predicate r x is healthy up to n levels, for
arbitrary n, then step (F(r) x) must also be healthy up to n+ 1 levels.

The proof is by induction on n. The base case concerns the answers at
level 0; but there are no such answers, so the statement holds trivially.

For the induction step, we consider n �= 0. The induction hypothesis states
that for any term x and any substitution σ, any answer σ′ produced by
(r x)(σ) up to level n is healthy. We denote the restriction of a search tree
of p(σ) up to level n by p(σ)↑n. By definition of step, if σ′ is an answer in
(step (F(r) x)(σ))↑(n+ 1), it must be an answer in (F(r) x)(σ))↑n. That
is, the answers to (step (F(r) x))(σ) at level n + 1 come from the answers
to ((F(r) x))(σ) at level n.

Now, F builds its resulting predicate from the predicate r x and other
healthy predicates using ‖, &, not and ∃ combinators. But we have estab-
lished that F is non-destructive, so all the answers to (F(r) x)(σ) at level
n must come from answers to r x and these other predicates from the level

106



n or less. By the induction hypothesis, they are all healthy.

We have already shown in lemmas 8.1, 8.2 and 8.3 that these operators
preserve the three healthiness properties. Therefore, all the answers at level
n in (F(r) x)(σ) are also healthy, and thus also all the answers at level n+1
in (step (F(r) x))(σ)↑(n+ 1) are also healthy.

So, we know that all recursive predicates with finite trees are conservative,
monotonic and oblivious. Further, we wish to show that since this is the
case for arbitrarily large finite trees, it extends to the infinitely large trees.

Lemma 8.6

The conservative, monotonic and oblivious properties of predicates do not
depend on the finiteness of the search tree.

The conservative property of predicates concerns only computed answers.
They are always a result of a finite computation, corresponding to a finite
branch, and it is irrelevant whether the tree might contain infinite branches.
So in this case, the property does not depend on the finiteness of the tree.

The monotonicity property compares two trees for the same predicate p,
under different substitutions σ1 and σ2 such that σ1 � σ2. The query pσ1

involving the more general substitution might result in an infinite tree where
the other query pσ2 results in a finite tree. For example, in the two queries:

append(x1, x2, x3)({x2/[2]}) and append(x1, x2, x3)({x1/[1], x2/[2]})

the first one results in a tree with infinitely many successful branches, while
the second results in a finite tree with a singe successful leaf corresponding
to the answer {x1/[1], x2/[2], x3/[1, 2]}. However, the property is stated for
all computed answers of the more refined query, and each such answer will
always be reached at a finite depth in the tree. Relating to our example, the
second, more refined, query has only one answer {x1/[1], x2/[2], x3/[1, 2]},
and for this answer there exists a more general answer in the collection re-
turned by the first query: {x1/[x4], x2/[2], x3/[x4, 2]}. But this correspond-
ing less refined answer is always reached at the same depth in the tree, so
it does not matter that there are infinitely many other answers.

107



The oblivious property states that the two trees corresponding to the queries
(r t1)(σ) and (r t2)(σ) are equal under certain conditions. But both finite
and infinite trees are equal exactly if they can be proved equal to an arbitrary
depth, so this property is conserved by transition to infinite trees.

So, we have shown that the three healthiness properties hold for recursive
predicates when their search trees are finite, and that the properties are
preserved also when the trees are infinite. Combining the two results, we get:

Theorem 8.1

All predicates are conservative, monotonic and oblivious, in the sense of
lemmas 8.1, 8.2 and 8.3.

For the sake of discussion, it is interesting to note why this argument does
not apply to some other properties of predicates, such as completeness. The
inductive proof of completeness, even in the non-diverging case, depends on
the finiteness of the answer tree. Completeness states that the computed
tree of the predicate query contains all the correct answers. We can prove
by induction that we always compute the subset of correct answers which
corresponds to the answers found in the tree up to depth n. However, with
recursion, there can be infinitely many answers, and these answers could
require increasingly deep branches; even though each finite tree is complete
up to a given level, this does not mean that the infinite is as well.

Since we treat completeness through LD-resolution, the recursive predicates
do not cause problems.

Another complex area related to recursive logic programs is the issue non-
termination. It is a complex issue in program transformation and semantic
analysis of Prolog programs. However, non-termination is not a great issue
for us for two reasons. First, program transformation in our case is by
equivalence, not implication. Since all our steps preserve non-termination,
each of transformation step yields two equally non-terminating trees, which
is fine. Second, our ‖ is parallel under fair search strategies; in Prolog the
unfair dfs is used, and a divergence of one ‖ branch leads to the divergence
of the whole query.

108



8.3 Denotational semantics of predicates

The semantics of pure logic programming provided by our embedding is
denotational, in the sense that the meaning of each predicate arises from
the composition of the meanings of its constituents. Indeed, in [3], Apt
proposes a denotational semantics for first order logic that is similar to our
embedding. The semantics proposed there is the denotational counterpart
of the operational semantics from [5], and it is consequently also built in
a more general setting of arbitrary interpretations for a given language L,
while our embedding is, as pointed out before, set in a Herbrand world of
universal term algebras for L.

From a denotational point of view, we need to attribute to each predicate
symbol p in the program some well-defined and uniquely minimal relation r,
so that the meaning given to p shall be unambiguous. The approach taken
in [3] is to define the meaning of a formula relative to input substitutions,
as a mapping from an input substitution to a set of answer substitutions.
This fits well with our treatment of predicates, since we also view them as
mappings from substitutions to collections of substitutions. Recall the type
of predicates in the general search model:

type Predicate = Answer → Forest Answer ,

where Answer is, in essence, a substitution. Each substitution is a finite
mapping, so can be viewed as a finite set. A Forest is a (possibly empty or
infinite) collection of such finite sets. If P(A) denotes the powerset of the set
A, a set-based reading of the type definition above gives us the denotational
semantics of predicate p:

�p� : Answer→ P(Answer).

The basic principle of denotational semantics is that the meaning of each
syntactic construct is defined as a semantical function of its direct con-
stituents. This induces a definition driven by the syntactic structure of the
language; our primitive syntactic constructs are the atomic predicates .=,
true and false, and the composite predicates are built with &, ‖, not and ∃.

109



The denotational semantics of the atomic predicates is:

�true�(σ) = {σ}, (8.4)

�false�(σ) = ∅, (8.5)

�t1
.= t2�(σ) = {σµ | µ← mgu(t1σ, t2σ)}. (8.6)

These definitions correspond directly to our implementation of predicates
.=, true and false in the embedding.

Further, for each of the predicate operators &, ‖, not and ∃ we define a
corresponding semantic operator, and state equations that relate the two
kind of operators. We have:

�p1 ‖ p2�(σ) = �p1�(σ) ∪ �p2�(σ), (8.7)

�p1 & p2�(σ) = union(map �p2� (�p1�(σ))), (8.8)

�∃x. rx�(σ) = {dropv (σ′) | σ′ ∈ �rv�(σ)}, v is fresh. (8.9)

Here ∪ computes a union of two (possibly infinite) sets; however, in the
forest model, even infinite sets of answers are represented as finite lists of
trees, some of which may be of infinite depth. The union of two such sets
of answers can easily be computed as a concatenation of the two lists of
trees, which is exactly what our ‖ operator does. Similarly, & composes
the answers in the two sets corresponding to their cost, so union ·map �p2�

computes also on infinite sets. The dropv (σ) function removes the variable
v if it is in the domain of σ. For simplicity, our implementation of ∃ does not
perform this elimination, but in principle it is a part of the standardisation of
answers described in Chapter 4. The equations (8.7–8.9) above correspond
to a set-based reading of the implementation of the operators.

Relating our semantics to that of Apt’s [3], the main differences are in the
generality of interpretations, and in the consequent treatment of terms and
equations. There, the substitutions are generalised to correspond to an
arbitrary interpretation J , and a special state error is needed to deal with
the possibility of a divergence in the computation of t1 = t2 or elsewhere.
So the meaning of a formula φ is:

�φ� : Subs→ P(Subs ∪ {error}).

110



The reason for our not having error in the answer set is that we have fair-
search strategies to deal with infinite computation and in our restricted
setting equalities never lead to error .

The denotational semantics of a term t is in [3] defined relative to the cho-
sen J -substitution and is denoted �t�J . It is a “partially-evaluated” term
where each maximal ground subterm is replaced by its value in J. An J -
substitution can be viewed as a generalisation of our substitutions: if one
chooses the Herbrand algebra as the interpretation J , J -substitutions and
substitutions coincide and so do the meaning of the term t, �t�J , and the
term t itself.

The other main difference is in the treatment of equality: our treatment of
equality can be more liberal, since unification does not diverge. The deno-
tational semantics of equality in [3] allows only ground equality-tests and
arbitrary assignments to variables (with the occurs-check restriction). For
other atomic formulae p(t1, . . . , tn), the denotational semantics is defined
only if they are ground.

With the restrictions of the interpretation to Herbrand interpretations, and
the more liberal treatment of equality for our setting, our denotational se-
mantics can be viewed as a restriction of that of [3] to logic programming.
Our embedding is provably consistent with this denotational semantics; it is
also consistent with the operational semantics of [5], for the restricted case
of logic programming. So, the embedding can be used as the link between
the two in the restricted setting of logic programming.

8.4 Herbrand semantics of predicates

We now give an alternative denotational semantics for predicates, where
the meaning of a predicate is independent of an input substitution. This
approach is similar to the traditional declarative semantics of logic program-
ming, where the meaning of a logic program corresponds to the set of atoms
that are implied by the program. The relation that we now attribute to each
predicate p is the minimal model of p. To differentiate from the semantics
�·� in the previous section, we denote this semantics by decl(p).

111



The Least Herbrand Model of p, decl(p), corresponds to the set of all ground
substitutions γ which extend some computed answer σ of p(ε):

decl(p) = {γ | ∃σ. σ ∈ Set(p(ε)) ∧ σ � γ}, (8.10)

where Set(p(ε)) corresponds to the set of all answers computed by the pred-
icate call p(ε). It is a collection of all the leaves in the forest returned by
this predicate, and may consequently be an infinite set.

Following the basic compositionality principle of denotational semantics, we
again specify how the meaning of the whole is composed from the meaning
of its constituent parts. For each of the syntactic operators &, ‖, ∃, and .=
we define a corresponding semantic operator, and equations that relate the
two kind of operators:

decl(p1 ‖ p2) = decl(p1) ∪ decl(p2), (8.11)

decl(p1 & p2) = decl(p1) ∩ decl(p2), (8.12)

decl(∃x. rx) = {dropv(γ) | γ ∈ decl(rv)},where v is fresh (8.13)

decl(t1
.= t2) = {γ | t1γ = t2γ}. (8.14)

Such equations need to be justified – we need to show that, for example,
∪ satisfies (8.11). This claim constitutes the soundness and completeness
proof for the implementation of ‖. We have:

decl(p1 ‖ p2)

= {γ | ∃σ. σ ∈ Set((p1 ‖ p2)(ε)) ∧ σ � γ} by (8.10)

= {γ | ∃σ. σ ∈ Set((p1(ε) ++ p2(ε)) ∧ σ � γ} by (5.12)

= {γ | ∃σ. σ ∈ Set((p1(ε)) ∧ σ � γ} ∪
{γ | ∃σ. σ ∈ Set(p2(ε)) ∧ σ � γ} by (8.15)

= decl(p1) ∪ decl(p2). by (8.10)

The step marked with (8.15) is justified because Set satisfies the following
property with regards to ++:

Set(p1(σ) ++ p2(σ)) = Set(p1(σ)) ∪ Set (p2(σ)). (8.15)

112



If the answer collection to a predicate call p1(σ) is an infinite stream, the
set Set(p1(σ)) will also be infinite. The union of two sets, even if they
are infinite, should be commutative. The question then, is, whether (8.15)
holds in all models of the embedding. In case of the dfs-model, where infinite
streams are used, the concatenation p1(σ) ++ p2(σ) would never reach the
second stream if the stream of p1(σ) is infinite. However, in any fair model,
including our general-search and bfs models, this step holds. This is because
the answer collections in each of these models consist a finite list of possibly
infinitely deep structures, and the concatenation therefore always computes
in a finite time. On the other hand, in case of unfair search, this property
does not hold in logic programming either. The same holds for diverging
computation, that is, if the search-tree of p1(σ1) contains infinite branches.

In the proof of (8.12), things are more complicated. We can only prove the
soundness part decl(p1 & p2) ⊆ decl(p1) ∩ decl(p2):

decl(p1 & p2)

= {γ | ∃σ. σ ∈ Set((p1 & p2)(ε)) ∧ σ � γ} by (8.10)

= {γ | ∃σ. σ ∈ Set(join(map p2(p1(ε)) ∧ σ � γ} by (5.13)

⊆ {γ | ∃σ. σ ∈ Set((p1(ε)) ∧ σ � γ} ∩
{γ | ∃σ. σ ∈ Set(p2(ε)) ∧ σ � γ} by (∗)

= decl(p1) ∩ decl(p2) by (8.10)

The step marked by (∗) is justified by the monotonic (8.2) and conservative
(8.1) healthiness properties, as we show below. Let σ ∈ Set(p1(ε)) and
σ′ ∈ Set(p2(σ)). For any such σ and σ′, we have:

σ′ ∈ Set(p2(σ))⇒ σ′ � σ. by (8.1)

σ′ ∈ Set(p2(σ)) ∧ ε � σ ⇒ ∃θ ∈ Set(p2(ε)). θ � σ′, by (8.2)

So, σ′ refines at the same time the answer σ in Set(p1(ε)) and some answer
θ in Set(p2(ε)). But then, for any such σ′, the set of ground refinements of
σ′ must be in the intersection of the ground refinements of σ and θ.

To prove completeness for our implementation of & in this setting, we need
to prove that the set inclusion holds the other way as well. For this we

113



need to use induction, with the assumption that p1 and p2 also preserve
the set inclusion in the other direction. This induction hypothesis corre-
sponds to Theorem 3 from Clark’s paper [26], and to the approach used to
prove completeness by Apt in [3], where a predicate is assumed equivalent
to the disjunction of its computed answer substitutions written out in an
equational form. As their results show, this proof can indeed be carried
out, but the argument does not extend to the recursive case. The reasons
for this are discussed in Section 8.2: properties such as completeness do
not extend trivially from arbitrary large finite trees to infinite trees. They
may be another way of extending this argument to the recursive case, but
at present we do not know of it. That is one of our reasons for using the
simulation of LD-resolution to argue for the soundness and completeness of
the embedding, also for recursive predicates.

The argument for the adequacy of our implementation of ∃ (8.13), is straight-
forward, and follows from the oblivious property of predicates (8.3). The
equation (8.14), which implies the soundness and completeness of equations,
follows immediately from the implementation of .=.

8.5 Uniqueness of fixpoints

Let p = F(p) denote a recursive predicate definition. Below we outline a
proof that this equation defines a unique predicate solution. The proof uses
metric spaces (cf. Smyth [128]) and a contraction property of predicates to
prove its uniqueness. This uniqueness result is best proved for the tree model
of logic programs, and can be easily promoted to the other fair models of
logic programs, such as the matrix model, but it does not hold for the unfair
model of depth-first search. The extension of the argument to mutually
recursive predicates is straight-forward, and uses tuples of predicates.

Intuitively, we need to show that there is some well-defined way of measuring
the ’distance’ between two predicates, that the predicates are well-behaved
in a certain sense regarding this distance, and that the functional F has
some contractive effect on it. In what follows below we denote by � the set
of all answer trees, by � the set of all predicates, by dT the distance function
between two trees and by dp the distance function between two predicates.

114



The contractiveness of F is provided by the step function which, as described
in section 3.4, determines the level of an answer in the search tree. We
define the truncation (T ↑n) to be the tree T restricted to n levels. We will
use ↑n to measure how similar two trees are: the distance between two trees
corresponds to their level of agreement, and diminishes the longer it takes
to distinguish between them. We first define a difference function dT (T1, T2)
between two trees T1 and T2 to be 2−n (the so-called Baire distance), where
n = max{n | (T1↑n) = (T2↑n)}, that is, the deepest common level of the
two trees. If the trees are equal, we define dT (T1, T2) to be 0.

Then, we define dp(p, q), for two predicates p and q, to be the supremum
sup{d(p(x), q(x)) | x ∈ Subst} of all the distances between answer trees for
p and q for all input substitutions x. This is always defined, because sup is
1 in the worst case (when n = 0), and 0 in the case when the two predicates
are equal.

The set of all trees with the function dT , (�, dT ), forms a metric space. This
is the case since the function dT satisfies the following by its definition:

dT (x, y) = 0⇔ x = y, (8.16)

dT (x, y) = dT (y, x), (8.17)

dT (x, z) ≤ dT (x, y) + dT (y, z). (8.18)

The space (�, dT ) is actually ultrametric, since we can state an even stronger
inequality than (8.18): the level of agreement between two trees is less or
equal to the maximum level of agreement between the two original trees and
a third one. This obviously implies that it must be less or equal to their sum.
Because all the distances in this space are ≤ 1, we call (�, dT ) 1-bounded.
Now, predicates are functions from substitutions to trees of substitutions,
and a standard result from the metric space theory guarantees that if (�, dT )
is 1-bounded (ultra)metric space, and the distance between two functions in
the space � is defined as dp above, we have that the function space (�, dp)
is ultrametric.

Furthermore, a Cauchy sequence Ti of trees is defined as:

∀ε > 0. ∃i. ∀j, k > i. d(Tj, Tk) ≤ ε. (8.19)

115



The distance between trees in a Cauchy sequence diminishes as the level of
agreement between the trees is getting deeper. For any ε, we can guarantee
that the trees in the sequence agree on at least i levels. Since this ε can get
arbitrarily small, the trees in the sequence will have to agree to arbitrary
many levels, and the trees of the sequence will resemble more and more the
(possibly infinite) tree that is the limit of such a sequence. Thus, every
Cauchy sequence Ti of trees in this space converges to some limit tree T
(8.20):

∀ε > 0. ∃i. ∀j ≥ i. d(Tj , T ) ≤ ε. (8.20)

Since every Cauchy sequence in the space (�, dT ) converges to an element of
�, it is a complete metric space. This property of the space guarantees that
limits are available, whenever necessary, and this is crucial for the fixpoint
theory stated further below.

Completeness of the space is preserved on the function space constructed
from it. Therefore, we also have:

Lemma 8.7

(�, dp) is a complete metric space.

A function f is said to be contractive on some metric space if there exists
some constant ρ such that d(f(x), f(y)) < ρ×d(x, y), for all x and y in that
space. In the case of the functional F , which adds at least one level to any
particular search tree (because it must contain at least one application of
step) the distance dT between the two trees is at least halved. So F is a
contraction on trees, and also on predicates because it will (at least) halve
the sup as well as the distance for each individual tree, with ρ = 1/2. If F
is contractive, we also have that it is non-destructive:

(T1↑n) = (T2↑n) ⇒ (F(T1)↑(n+ 1)) = (F(T2)↑(n+ 1)), (8.21)

since the left hand side implies that dT (T1, T2) ≤ 2−n, and the contractive-
ness of F results in dT (F(T1),F(T2)) ≤ 2−(n+1) which implies the right hand
side. By the definition of dp, this property also promotes to predicates:

116



Lemma 8.8

F : � → � is a contractive function.

Intuitively this must be true since the answers of (F(p))(σ) with depth n+1
depend only on the answers of p(σ) with depth n or less.

Since we have asserted that (�, dp) is a complete metric space and that
F : � → � is a contractive function, Banach’s fixed point theorem allows
us to assume and compute the unique solutions to our recursively defined
predicates in the tree model. So finally, we have:

Theorem 8.2

For all p ∈ �, the equation p = F(p) has a unique solution.

As we have seen here, the uniqueness of fixpoints crucially depends on the
step function, which provides the contraction property for F in the general
model. The same approach works for the breadth-first search model, because
it can be made in a metric space in a similar way, and the step there will also
make F contractive. However, in the depth-first model, step is the identity
function, so the fixpoints in this model are not unique.

117



Chapter 9

Program Transformation

In this chapter we describe how some important program transformation
techniques from functional programming can be translated to logic pro-
grams, and present three examples where these technique have been suc-
cessfully applied to derive efficient implementations of logic programs from
their specifications. The transformations presented here are based on fold
operations, and as such they preserve program termination.

9.1 Algebraic program transformation

The Prolog predicates rev1 and rev2 are both true exactly if one argument
list is the reverse of the other:

rev1([ ], [ ]). rev2(A,B)← revapp(A, [ ], B).

rev1([X|A], C)← revapp([ ], B,B).

rev1(A,B), append(B, [X], C). revapp([X|A], B, C)←
revapp(A, [X|B], C).

These two predicates have the same Least Herbrand Models, but they have
a very different computational behaviour: the time complexity for rev1 is
quadratic while for rev2 it is linear. We now present a general technique
for developing the efficient predicate from the clear but inefficient one, in

118



this and similar examples. The approach presented here is primarily in-
spired by Bird and de Moor’s work [18] on similar program synthesis and
transformation techniques for functional programming.

Arguably the most general transformational technique in logic programming
is the “rules and strategies” approach [99]. In this technique the rules per-
form operations such as an unfolding or folding of clause definitions, intro-
duction of new clause definitions, deletion of irrelevant, failing or subsumed
clauses, and certain rearrangements of goals or clauses. Subject to certain
conditions, these rules can be proved correct relative to the most common
declarative semantics of logic programs.

In this approach, the application of the transformation rules is guided by
meta-rules called strategies, which prescribe suitable sequences of basic rule
applications. The main strategies involve tupling of goals that visit the
same data structure in a similar way, generalisation of goals in a clause
in order to fold them with some other clause, elimination of unnecessary
variables, and fusion of predicates defined by two independent recursive
predicates into a single predicate. Such strategies are used as the building
blocks of more complex transformation techniques, and for limited classes
of predicates these strategies have been well understood and can be seen as
the backbone of a compositional method for transforming logic programs.

Our transformational example can indeed be solved by the rules and strate-
gies approach, together with mathematical induction, needed to prove the
associativity of append on which the transformation depends. The basic
strategies involved are tupling and generalisation, and the derivation is sim-
ple and semantically correct relative to the least Herbrand model of the two
programs. However, there are a few methodological problems in this ap-
proach. First, the declarative semantics does not quite capture the behaviour
of logic programs when they are evaluated under the standard depth-first
search strategy, and we have no clear measure of the reduction of the compu-
tation complexity. Second, the application of induction requires a separate
form of reasoning. But maybe most importantly, if we did not know of this
particular combination of strategies, there would be no systematic method
to guide us in the derivation. As far as we know, there are no general results
regarding what complex strategies can be applied for families of predicates.

119



Below we outline a general approach to logic program transformations, and
argue that such an approach should be based on higher-order predicates and
their properties.

Many problems similar to the one described above have recently been ex-
plored and explained for functional programs in [18]. These results build on
the ample heritage of program transformation in the functional program-
ming community and are based on laws of algebra and category theory.
According to this algebra of functional programming, the program transfor-
mation in the example above can be seen as an instance of a more general
transformational strategy, valid for an entire family of programs based on
functions foldl and foldr and parametric in the data structure. Algebraic
laws regarding such higher-order functions prove to be highly versatile for
functional program transformations.

There are two main advantages in using our functional embedding for trans-
formation of logic programs. The first one is that it allows us to reason
about logic programs in a simple calculational style, using rewriting and the
algebraic laws of combinators. The second, and the more interesting reason,
is that many predicates are easily expressible using higher-order functions
that accept more basic predicates as arguments.

We can implement the general “prepackaged recursion operators” foldl ,
foldr , map etc. as functions from predicates to predicates, and thereby get
the opportunity to use their algebraic properties for program transformation.
This approach avoids the problems related to higher-order unification, while
it gives us the power of generic programming and provides the appropriate
language and level of abstraction to reason about logic program transfor-
mation. Also, even though we use higher-order syntax, we only apply it
in a manner which can be translated in a systematic way to the first-order
syntax. Consequently, the laws of Chapter 4 that were proved only for the
first-order syntax are still applicable.

Even though each particular derivation can be performed in a first-order
setting, the general strategies guiding the program transformations depend
essentially on the higher-order functions. We argue that, as in functional
programming, so also in logic programming it is the properties of generic
recursion operators that yield generic transformation strategies.

120



9.2 Emulation of the unfold/fold technique

We begin with the following definition of a predicate adj1(x, y, xs) that holds
if x and y are adjacent elements of list xs:

adj1(x, y, l) = (∃n. elem(x, n, l) & elem(y, succ(n), l))

elem(x, n, l) =

(∃xs. n .= 0 & l
.= cons(x, xs))

‖ (∃m, y, ys. n .= succ(m) & l
.= cons(y, ys) & elem(x, n, ys)),

where succ(n) is the term denoting the successor of numeral n. By trans-
forming this program, we aim to obtain the following, declaratively equiva-
lent, definition of adj1 that avoids the auxiliary predicate elem:

adj2(x, y, l) =

(∃xs. l .= cons(x, cons(y, xs)))

‖ (∃z, ys. l .= cons(z, ys) & adj2(x, y, ys)).

The proof of their equivalence can be done by our algebraic laws as follows.
We first substitute the definition of elem for its first occurrence in the body
of adj1 and use the distributivity of & and ∃ through ‖ (laws 4.6 and 4.8),
getting:

adj1(x, y, ps) =

(∃n, xs. n .= 0 & ps
.= cons(x, xs) & elem(y, succ(n), ps))

‖ (∃n,m, z, xs. n .= succ(m) & ps
.= cons(z, xs) &

elem(x,m, xs) & elem(y, succ(n), ps)).

Next we apply the one-point rule (4.19) for n and use the substitution of
equals for equals (4.28) to replace ps by cons(x, xs), to obtain:

adj1(x, y, ps) =

(∃xs. ps .= cons(x, xs) & elem(y, succ(0), cons(x, xs)))

‖ (∃m, z, xs. ps .= cons(z, xs) &

elem(x,m, xs) & elem(y, succ(succ(m)), cons(z, xs))).

121



We now reason about the expression elem(y, succ(0), cons(x, xs)). The rewrite
steps are shown below. We also use the fact that the unification of two non-
unifiable terms (succ(0) and 0) equals the predicate false, and that (∃x.false)
equals false as a consequence of (4.14). We get:

elem(y, succ(0), cons(x, xs))

= (∃zs. succ(0) .= 0 & cons(x, xs) .= cons(y, zs))

‖ (∃m, z, zs. succ(0) .= succ(m) &

cons(x, xs) .= cons(z, zs) & elem(y,m, zs))

= false ‖ (∃z, zs. x .= z & xs
.= zs& elem(y, 0, zs))

= elem(y, 0, xs)

= . . .

= (∃us. xs .= cons(y, us)).

We reason similarly about the expression elem(y, succ(succ(m)), cons(y, xs))
to get elem(y, succ(m), xs). Then we substitute these back into our previous
expression for adj1(x, y, ps), and get:

adj1(x, y, ps) =

(∃xs. ps .= cons(x, xs) & ∃us.(xs .= cons(y, us))

‖ (∃m, z, xs. ps .= cons(z, xs) &

elem(x,m, xs) & elem(y, succ(m), xs)).

Now in the first clause we pull ∃us to the front using (4.8), then eliminate
xs using the one-point rule (4.12). In the second clause we move m inwards
using (4.8) and then fold last two goals according to the definition of adj1:

adj1(x, y, ps) =

(∃us. ps .= cons(x, cons(y, us)))

‖ (∃z, xs. ps .= cons(z, xs) & adj1(x, y, xs)).

This equation is equivalent to our definition of adj2. Since adj1 and adj2
satisfy the same guarded recursive equation, we finally appeal to the unique-
ness of fixed-points for recursive predicate definitions, and conclude that the
predicates adj1 and adj2 are the same.

122



In fact, here and in all the following examples we need the function step
in order to justify this appeal to uniqueness of fixed-points, since it is the
step function of a fair strategy that guarantees the contractiveness of the
predicate space. We have omitted step in the example above for simplicity
of presentation. We now sketch the changes needed and the applications to
the laws of step. The “proper” predicate definition for adj1 is:

adj1(x, y, l) = step (∃n. elem(x, n, l) & elem(y, succ(n), l)),

and so on for adj2 and elem2. After the same transformation steps as before,
consisting of the substitution of the definition of elem for its first occurrence
in the body of adj1 and the distribution of & and ∃ through ‖, we have two
step occurrences enclosed by ∃ in the new predicate. We then apply the law
(5.26, 5.27) relating step to ∃ and &, which let us extract the two inner step
occurrences to the front of each ‖ branch. Next we apply the distributivity
of step through ‖ (5.29) to extract these step’s to the front:

adj1(x, y, ps) = step (step (

(∃xs. ps .= cons(x, xs) & elem(y, succ(0), cons(x, xs)))

‖ (∃m, z, xs. ps .= cons(z, xs)

& elem(x,m, xs) & elem(y, succ(succ(m)), cons(z, xs))))).

As before, we now reason about the expression elem(y, succ(0), cons(x, xs)),
but now we get step (step (∃us. xs .= cons(y, us))). From the expression
elem(y, succ(succ(m)), cons(y, xs)) we get step (step (elem(y, succ(m), xs))).
Substituting these back into above expression for adj1(x, y, ps), we get:

adj1(x, y, ps) = step (step (

(∃xs. ps .= cons(x, xs) & step (step (∃us. xs .= cons(y, us)))

‖ (∃m, z, xs. ps .= cons(z, xs)

& elem(x,m, xs) & step (step (elem(y, succ(m), xs))))).

Now we apply in both clauses the weak-equality law (5.28) for moving the
step from the second conjunct outside &. This is the first point in this exam-
ple where we are performing rewriting steps that are true in the declarative
but not in the procedural sense. We know, however, that the computed

123



answers are still the same. We then eliminate xs from the first clause using
the one-point rule (4.19), and contract the definition of adj1 in the second
clause, to get:

adj1(x, y, ps) = step (step (step (step (

(∃us. ps .= cons(x, cons(y, us)))

‖ (∃z, xs. ps .= cons(z, xs) & adj1(x, y, xs)))))).

We apply the other weak-equality law for step (5.30) to reduce the four
outermost steps to one, and the equation above becomes equivalent to our
translation of the second definition of adj2.

9.3 Accumulator introduction

We now return to the example introduced at the beginning of this chapter,
ignoring step for sake of readability. The standard definition of the naive
reverse predicate has quadratic time complexity:

rev1(l1, l2) =

(l1 .= nil & l2 .= nil)

‖ (∃x, xs, ys. l1 .= cons(x, xs) &

rev1(xs, ys) & append(ys, cons(x, nil), l2)).

A better definition of reverse uses an accumulating parameter and runs in
linear time:

rev2(l1, l2) = revapp(l1, nil, l2)

revapp(l1, acc, l2) =

(l1 .= nil & l2 .= acc)

‖ (∃x, xs. l1 .= cons(x, xs) & revapp(xs, cons(x, acc), l2)).

We can prove these two definitions equivalent by using the previously men-
tioned algebraic laws together with structural induction, following the same
style of transformation as in the previous section. This approach is similar
to the rules and strategies approach for logic program transformation.

124



However, there is a shorter and more elegant way of proving these predicates
equal, by resorting to program derivation techniques based on higher-order
fold predicates and their properties. The outline of the derivation is:

rev1(xs, ys)

= foldr (snoc, nil) (xs, ys) by defn. of foldr and snoc

= foldl (flipapp, nil) (xs, ys) by duality law (9.1), see below

= revapp(xs, nil, ys) by defn. of foldl

= rev2(xs, ys). by defn. of rev2

We denote this derivation by (∗) and justify each of the steps below.

The higher-order operators have proved to be fundamental in functional
programming, partly because they provide for a disciplined use of recursion,
namely a recursive decomposition that follows the structure of the data type.
They also satisfy a set of laws that are crucial in the functional program
transformations, and we will rely on one of those laws in our derivation (∗).

The definitions of some families of higher-order predicates, for example the
map and fold predicates over lists or other data structures, can be made
without any extensions to the implementation of our embedding. They can
be implemented using Haskell’s higher-order functions on predicates, so we
do not need to resort to the higher-order unification machinery of, say, λ-
Prolog. For example, the predicate foldr , which holds iff the predicate p
applied right-associatively to all the elements of the list l yields the term
res, could be defined as:

foldr (p, e) (l, res) =

(l .= nil & e
.= res)

‖ (∃x, xs, r. l .= cons(x, xs) &

foldr (p, e) (xs, r) & p(x, r, res)),

where (p, e) are the higher-order parameters to the function foldr and (l, res)
are the arguments to the resulting predicate. The predicate p corresponds
to a binary function to be applied to the consecutive list elements, and
e denotes the initial element used to ‘start things rolling’. For example,

125



the function foldr (add, 0) applied to ([2, 7, 8], res) produces the predicate
r1

.= 0 & add(8, r1, r2) & add(7, r2, r3) & add(2, r3, res); when invoked with
the appropriate input substitution (say the empty one), this predicate has
the effect that res unifies with the term denoting the numeral 17.

In the first step of the derivation (∗), we use the following predicate snoc:

snoc (x, l, res) = append(l, cons(x, nil), res).

The pattern of recursion in the definition of rev1 is the same as that captured
by foldr . Using a result that guarantees that recursive definitions have
unique fixed points, we may conclude that rev1 is equal to the instance of
foldr shown in the second line of our derivation (∗).

The next step in (∗) involves a transition from foldr to another higher-order
predicate, foldl . This left-associative fold over lists could be defined as:

foldl (p, e) (l, res) =

(l .= nil & e
.= res)

‖ (∃x, xs, r. l .= cons(x, xs) &

p(e, x, r) & foldl (p, r) (xs, res)).

Roughly speaking, the function call foldl (add, 0) ([2, 7, 8], res) would return
the predicate add(0, 2, r1) & add(r1, 7, r2) & add(r2, 8, r3) & r3

.= res. Again,
this predicate has the effect of setting res to 17, but this time the numbers
are added from left to right.

The second step in (∗) is an instance of the duality law:

foldr (f, e) (l, res) = foldl (g, e) (l, res), (9.1)

where f is replaced by snoc, g by flipapp, and e by nil . Intuitively, we replace
tail-concatenation of snoc by a composition of frontal append operations.

The law above holds if f , g and e satisfy the following requirements: f and g
must associate with each other, and f(x, e, res) must equal g(e, x, res) for all
x and res. The predicates f and g associate with each other iff the predicates
(∃t. f(x, t, res) & g(y, z, t)) and (∃t. g(t, z, res) & f(x, y, t)) are equal. In

126



functional notation this corresponds to f(x, g(y, z)) = g(f(x, y), z).

The proof of (9.1) requires the following auxiliary result:

(∃t. f(x, t, res) & foldl (g, y) (xs, t))

= (∃t. f(x, y, t) & foldl (g, t) (xs, res)).

This is proved by induction, using the associativity assumption about f
and g. Then this equality, with y instantiated to e, is used together with the
assumption about the equality of f(x, e, res) and g(e, x, res), in the induction
proof for (9.1).

Returning to our derivation (∗), we need to check that the duality law really
is applicable, so we now prove that the predicates snoc and flipapp and term
nil satisfy the requirements for f , g and e. If flipapp is defined as:

flipapp (l, x, res) = append(cons(x, nil), l, res),

then we unfold the definition of both functions, and use the associativity of
append in step marked with (∗∗), to get:

(∃t. snoc(x, t, res) & flipapp(y, z, t))

= (∃t. append(t, cons(x, nil), res) & append(cons(z, nil), y, t))

= (∃t. append(cons(z, nil), t, res) & append(y, cons(x, nil), t)) (∗∗)
= (∃t. flipapp(t, z, res) & snoc(x, y, t)),

and similarly for snoc(x,nil, res) and flipapp(nil, x, res). The associativity
of append used in (∗∗) can be shown by induction on the list argument res.

For the penultimate step in our derivation (∗), we first prove that

revapp(l, acc, res) = foldl (flipapp, acc) (l, res),

using a simple induction proof. Then, instantiating the arbitrary term acc

in foldl to the term nil, we get exactly the foldl (flipapp, nil) (xs, ys) from
the third line of (∗), so we can rewrite this to a call to revapp(xs, nil, ys) in
the fourth line. The final step follows directly from the definition of rev2.

127



9.4 Generate-and-test elimination

We start with the standard implementation of the naiveSort predicate that
uses the ’generate-and-test’ method to sort a list:

naiveSort(l1, l2) = perm(l1, l2) & isSorted(l2)

isSorted(l) =

l
.= nil

‖ (∃x. l .= cons(x, nil))

‖ (∃x, y, l2. l .= cons(x, cons(y, l2)) &

le(x, y) & isSorted(cons(y, l2))),

where perm has the standard definition, using the auxiliary predicate delete:

perm(l1, l2) =

(l1 .= nil & l2 .= nil)

‖ (∃x, xs, zs. l2 .= cons(x, xs) &

delete(x, l1, zs) & perm(zs, xs))

delete(x, l1, l2) =

(∃ys. l1 .= cons(x, ys) & l2 .= ys)

‖ (∃y, ys, zs. l1 .= cons(y, ys) & l2 .= cons(y, zs) &

delete(x, ys, zs)).

We now wish to show that naiveSort is equivalent to its more efficient variant
iSort , which performs insertion sort.

Given a predicate insert(x, zs, l2) which is true if the sorted list l2 is the
result of inserting the element x in the appropriate position in the sorted
list zs, the usual implementation of the iSort predicate is:

iSort(l1, l2) =

(l1 .= nil & l2 .= nil)

‖ (∃x, ys. l1 .= cons(x, ys) &

iSort(ys, zs) & insert(x, zs, l2)),

128



insert(x, l1, l2) =

(l1 .= nil & l2 .= cons(x, nil))

‖ (∃y, zs. l1 .= cons(y, zs) & l2 .= cons(x, cons(y, zs)) &

le(x, y))

‖ (∃y, ys, zs. l1 .= cons(y, ys) & l2 .= cons(y, zs) &

gt(x, y) & insert(x, ys, zs)).

The outline of this derivation is similar to the previous example, except that
the essential step this time uses the fusion law for fold instead of the duality
law. If a function is expressed as a composition of functions, the fusion law
may be applicable; it combines two or more subsidiary computations into
a single function. This may eliminate multiple traversals and intermediate
data structures, as in the example here. The derivation is:

naiveSort(l1, l2)

= isSorted(l2) & perm(l1, l2) by defn. of naiveSort

= isSorted(l2) & foldr(add, nil) (l1, l2) by defn. of foldr

= foldr(insert, nil) (l1, l2) by fusion (9.2), see below

= iSort(l1, l2). by defn. of iSort

In step one we simply unfold the definition of naiveSort(l1, l2) and use the
commutativity property of &. In the next step we argue that the predicate
perm is an instance of foldr(add, nil), where the predicate add is as defined
below. First, we use an auxiliary result stating that the relation perm is
symmetric, i.e. the defining equation for perm(zs, xs) and perm(xs, zs) can
be rewritten to the same recursive equation. Second, we define add to be
the converse of delete, that is, add(x, zs, l1) = delete(x, l1, zs), and we can
now rewrite perm as:

perm(l1, l2) =

(l1 .= nil & l2 .= nil)

‖ (∃x, xs, zs. l2 .= cons(x, xs) &

add(x, zs, l1) & perm(xs, zs)).

Then, once again using the result about the symmetricity of perm, we swap

129



l1 and l2 and obtain a recursive equation equivalent to the one defining
foldr (add, nil) (l1, l2).

The third step is the major step in this proof, and it is the one where
the efficiency gain is achieved, i.e. the one that captures this transforma-
tion strategy. It involves the fusion law for foldr , which can be proved by
induction on the length of the input list. The assumptions for this law1

are as follows: let predicates f , g and h, and a term e, be such that f(e)
holds, and that f(res) & g(x, y, res) rewrites to the same recursive equa-
tion as h(x, y, res) & f(y) for all terms x, y and res (in functional notation,
f(g x y) = h x (f y)). Then, the fusion law states that:

f(res) & foldr (g, e) (l, res) = foldr (h, e) (l, res). (9.2)

If we now insert our predicate isSorted for f , add for g, insert for h, and
nil for e, the third step in the main proof is a straight-forward application
of the fusion law. We only need to prove that our choices for f , g, h, and
e satisfy the two fusion law requirements. The predicate call isSorted(nil)
holds by definition, and the remaining condition for f , g and h is that:

isSorted(res) & add(x , l , res) = insert(x , l , res) & isSorted(l).

This equality can also be proved by an application of algebraic laws and
induction on the lists l and res, using the lemma:

delete(x, zs, ys) & isSorted(cons(y, zs))

= gt(x, y) & delete(x, zs, ys) & isSorted(cons(y, zs))

which can also be proved by induction on the argument lists zs and ys.

In the final step, we simply recognise that iSort(l1, l2) is equivalent to
foldr (insert, nil) (l1, l2).

Following a similar approach, we can also derive the equivalence of the naive
sort and, for example, quickSort or selectionSort . Both of these derivations
rely on the fusion law, but they are algebraically slightly more advanced
than the above derivation of iSort because they also involve properties of

1the assumptions are slightly simplified for the sake of this example

130



unfold predicates.

The derivation of quickSort uses fold and unfold predicates on trees. The
reason for this is that even though quickSort is usually represented as a flat
recursive predicate, it has a compositional form which is basically a sort on
trees where the intermediate tree data type has been eliminated. Essentially,
the derivation of quickSort involves proving the equality:

isSorted(l2) & perm(l1, l2)

= mkTree(l1, t) & flatten(t, l2),

where the predicate mkTree(l1, t) holds if t is an ordered tree:

mkTree(l, t) =

(l .= nil & t
.= null)

‖ (∃x, xs, t1, t2, l1, l2, a. l .= cons(x, xs) & t
.= fork(t1, a, t2) &

split(l, l1, a, l2) & mkTree(l1, t1) & mkTree(l2, t2))

split(l, l1, a, l2) =

(∃y, ys. l .= cons(y, ys) & a
.= y &

filter (λx.le(x, y)) (l, l2) & filter (λx.gt(x, y)) (l, l1)),

where filter (g) (l, l1) is a higher order predicate that holds if l1 contains all
the elements of l that satisfy g, and flatten(t, l) holds if the list l corresponds
to the flattened tree t. The terms representing trees and fold functions on
trees are defined similarly to the corresponding definitions for lists.

131



Chapter 10

Advanced Program
Transformation

Optimisation problems are well suited for logic programming, because they
often require a simple specification and a subsequent search for the best
solution in a combinatorial space. In this chapter we show how our algebraic
calculus of relations can be applied to an analysis and the derivation of the
appropriate efficient algorithm for certain families of optimisation problems.
The main purpose of this chapter is to make a tentative connection, and to
provide a fresh perspective on the work of Bird and de Moor in [18]; we do
not attempt a thorough semantical analysis of their theorems in the setting
of our embedding.

10.1 Optimisation problems

Dynamic programming1 is the name for a general strategy used in algorithms
that organises the computation so that subproblems are evaluated once in-
stead of many times; traditionally this is done by combining a recurrence
equation with tabling or memoing. As applied to combinatorial optimisa-
tion problems, dynamic programming was first popularised by Bellman in

1The nomenclature in the dynamic programming literature is somewhat inconsistent,
so in what follows we have chosen to follow a neutral source [32].

132



[107], where he introduced the Principle of Optimality which states that an
optimal solution is composed of optimal solutions to subproblems. This is
the essential (though only sufficient and not necessary) condition for the
dynamic programming technique to be applicable. Greedy algorithms also
suppose that the principle of optimality holds, but in addition they exploit
a greedy condition which guarantees that on basis of some local informa-
tion only the best subproblem needs to be computed. Some problems fall
in between these two extremes of pursuing all or only one of the recursive
decompositions.

The problems which satisfy the principle of optimality can be divided into
two categories. Some are naturally solved in a top-down way, through a
decomposition of a recursive data-type and a consequent combination of
the partial answers. Others are better solved in a bottom-up way, where
a recursive data-type which contains the answers is being composed from
some seed. Provided that the conditions mentioned above hold, greedy
algorithms can be derived for both of these classes of problems, but dynamic
programming, as treated here, only applies to problems with bottom-up,
compositional specifications. For the problems which do not satisfy the
greedy condition yet require a decompositional solution, we derive a third
alternative: thinning algorithms.

From a programmers point of view, two main questions arise from this de-
scription of algorithms for optimisation problems. One is how to formalise
the aforementioned conditions for each of the three strategies, in such a way
that programmers can easily analyse the problem and identify the appropri-
ate algorithm design strategy. The second is how can the programmers use
this information to derive the correct and efficient algorithm within the given
strategy. In the traditional, tabulating, approach to dynamic programming,
there is no general answer to these two questions.

These two questions have recently been addressed by the relational alge-
braic approach to optimisation problems, and applied in the framework of
functional programming. Helman [61] was the first to separate the ideas of
problem structure and computation, and his ideas have been generalised by
de Moor and Bird [18, 39] and later by Curtis [36].

Here, we apply these results to the setting of logic programs by showing how

133



this approach can be used to answer these questions for three standard ex-
amples in dynamic programming: the string-edit, the minimum lateness and
the 1/0 knapsack problem. In section 10.2 we present the general framework,
and in section 10.3 we formulate in terms of higher-order logic programs the
three central theorems for the classification of optimisation problems and
for the derivation of the respective algorithms. In sections 10.4, 10.5 and
10.6 we show how the theorems can be applied to the problems mentioned
above. The full code for the three examples, written in HiLog, can be found
in the appendix B.

10.2 Algebraic approach to optimisation problems

The goal behind the algebraic approach to optimisation problems is to pro-
vide a general tool for both the analysis and the derivation of the appropriate
efficient algorithm. The starting point for both these tasks is a uniform spec-
ification of optimisation problems. In this section, we first present this spec-
ification, and then we prepare the ground for the analysis and the derivation
that will be presented in the following section.

In order to make the theorems as general as possible, we use higher-order
predicates. In many higher-order logic programming languages, these pred-
icates would have to be defined in terms of call/n, which applies a given
predicate to the rest of the argument list. In our embedding, however, we
have direct access to higher-order functions such as map and fold. Also, for
the sake of simplicity, when we need to return a collection of answers to
a given predicate rather than the individual answers, we define a function
bagof, corresponding to the standard logic programming predicate bagof/3.
Also, in the examples in this chapter we will use interchangeably the nota-
tion cons(x, xs) and [x|xs], depending on the context.

Optimisation problems ask for the best solution among all the solutions to
a particular problem. This specification is most naturally formulated as a
composition of two relations: first generate all the possible solutions to the
problem, and then test this collection of answers to find the best answers
among them.

134



Which answers are “best” depends on the particular ordering of solutions
which will inevitably vary from problem to problem, such as maximising the
value, minimising the delay, etc. To abstract from such particulars, we write
r to denote the ordering of the solutions, and use a higher-order predicate
best(r, bag, out) that is true if out contains the r-optimal solutions in the
collection bag . Given a predicate bagof(x, p(x), bag) that collects in bag all
the x’s satisfying p(x), the specification can be implemented as:

optimal r (in, out) =

(∃x, bag. bagof (x, solution(in, x), bag) &

best (r, bag, out)).

The relation r must be a preorder, i.e. a reflexive and transitive relation.
However, some elements of bag may not be related by it, so it need not be a
connected preorder. We say that a solution a is better then b with respect to
r if and only if the predicate r(a, b) holds, and the predicate best(r, x, c) holds
when r happens to be connected and c matches all the optimal elements in
x with respect to r:

best (r, x, c) =

x
.= [c]

‖ (∃a, b, y. x .= [a|[b|y]] & r(a, b) & best (r, [a|y], c))
‖ (∃a, b, y. x .= [a|[b|y]] & r(b, a) & best (r, [b|y], c)).

Further, we observe that most of the common optimisation problems can be
formulated in terms of some initial data-types, such as lists or trees, and that
the computation of individual solutions performed by solution(in, x) can be
expressed in terms of higher-order relations over these initial data-types,
such as fold or unfold . We simplify the presentation by expressing all the
results in terms of lists, which suffices for the purposes of our three examples,
although the more general setting of [18] includes any initial data-types.

The fold relation for lists collapses an input list to a value according to a
given relation p, while unfold constructs from an input value a list according
to the relation p. They are converses of each other; declaratively, we do not
need two separate definitions as we do in functional programming languages,

135



as we could simply reverse the roles of two arguments in to produce a list
rather than consume a list. Operationally, however, we need to reverse the
order of the two premises so that Prolog and other systems with an unfair
selection rule can solve the subgoals in the correct order. Still, in the rela-
tional setting of logic programming and of our embedding their definitions
are almost identical, the only difference being ordering of the two literals in
the second clause:

fold (p, e) (l, res) =

(l .= nil & e
.= res)

‖ (∃x, xs, r. l .= [x|xs] & fold (p, e) (xs, r) & p(x, r, res)),

unfold (p, e) (res, l) =

(l .= nil & e
.= res)

‖ (∃x, xs, r. l .= [x|xs] & p(x, r, res) & unfold (p, e) (xs, r)).

In case of fold it is expected that the input parameter will be the third
and the output will be the fourth argument, while for unfold their positions
will be swapped. For example, fold (add, 0) ([2, 7, 8], x) will be true for
{x/17}, while unfold (add, 0) (y, 17) will return {y/[2, 7, 8]} as one of its
many answers, for an appropriate definition of the predicate add.

As for an application of fold in a computation of a particular solution in
bagof , it is the natural predicate to use whenever we are given a list and
need to decompose it, say, in order to find an optimal way to select some
elements from it. For example, in the knapsack problem, if in is a list of
items and the task is to select the most valuable sublist of it within a given
knapsack capacity, a solution out can be computed by a fold which uses
the term emptysack as the initial input to the computation and the relation
consumeone to consume the consequent elements of the in list:

solution (in, out) =

fold (consumeone, emptysack) (in, out).

Alternatively, whenever we need to compose the solutions from some seeds,
as for example in the string edit problem where we are looking at sequences

136



of editing operations between two strings, we will use unfold to implement
the predicate solution. The solutions can be computed by an unfold which
uses the term emptyedit as the initial edit empty sequence and the relation
addone to produce the consequent edit instructions in the list out . Predicate
addone builds the list out from its previous result and the seed in, which
simply contains the two strings to be edited:

solution (in, out) =

unfold (addone, emptyedit) (out, in).

Finally, the notion of refinement in the next section is as follows: the derived
predicate fast refines the specification spec if for all inputs in, we have:

fast (in, out)⇒ spec (in, out).

With these preliminaries out of the way, we are now ready to express the
three central optimisational theorems regarding the applicability and the
derivation of dynamic, greedy and thinning algorithms. The proofs of these
theorems are omitted here, but can be found in a more general form in [18].
These proofs, as the ones in the previous chapter, are based on equational
reasoning about the algebraic properties of the relations involved, which
is why we refer to this as an “algebraic” approach. As already seen in
the previous chapter, in this style of program calculation, theorems about
higher-order functions like fold play a central role.

10.3 The three theorems

Before we start introducing the main theorems of this chapter, we need
the notion of monotonicity of predicates. The predicate p((a, x),newx) con-
structs a solution newx by incrementing the partial solution x by a. We say
that p is monotonic, or order preserving, on a preorder r if, for any argu-
ments xi and xj , if xi is better than xj with respect to r, no matter how
p extends the inferior solution to some newxj , we can always find at least
one way to extend by p the superior solution so that the resulting newxi is
better than newxj . If this is the case, we know that it is safe to throw the

137



inferior solutions away and only extend the best ones. Formally:

r (xi, xj) ∧ p ((a, xj), newxj) ⇒
(∃newxi. p ((a, xi), newxi) ∧ r (newxi, newxj)). (10.1)

The predicate p can be non-deterministic. When p happens to be de-
terministic, in particular, when it is the list constructor cons defined by
cons((a, x), [a|x]), the condition (10.1) simplifies to:

r(xi, xj) ⇒ r([a|xi], [a|xj]). (10.2)

The Dynamic Theorem is applicable to problems in which it is natural
for the partial results to be computed by an unfold , i.e. by constructing
candidate answers from a seed. The theorem also guides the first part of
the derivation of the dynamic program, but the programmer is still left to
his own ingenuity to derive the appropriate tabling scheme. If (10.2) holds
for some given r, the specification:

d (in, out) =

(∃x, bag. bagof (x, unfold (step, base) (x, in), bag) &

best (r, bag, out)),

can, for any given step and base, be refined to:

d (in, out) =

out .= nil

‖ (∃x, bag, bag1. bagof ((a, x), step((a, x), in), bag) &

consmap (d, bag, bag1) &

best (r, bag1, out)),

where the auxiliary predicate consmap is defined as:

consmap (p, l1, l2) =

(l1 .= nil & l2 .= nil)

‖ (∃a, x, y,newx,newy. l1 .= [(a, x)|y] & l2 .= [[a|newx] | newy] &

p (x,newx) & consmap (p, y,newy)).

138



The derived program is better since it filters the input through best at each
level of recursion, rather than maintain all the unprofitable solutions and
choosing the optimal ones at the very end, as the specification does. The sec-
ond program for d describes a recursive scheme in which first step((a,x),in)
is applied to in in all possible ways. These results (a1, x1), . . . , (an, xn) are
collected by bagof in the bag bag . Then the recursive calls to d are ap-
plied by consmap to each of the new seeds x1, . . . , xn. These calls to d

generate the lists newx1, . . . ,newxn, which are consequently “consed” with
a1, . . . , an, resulting in the list bag1 of solution lists.

The monotonic condition (10.2) is actually the Principle of Optimality stated
formally for lists. Here is the reason why it is needed in this derivation. Each
seed xi may generate many alternatives for newxi, and all of these will be
contained in bag1. However, since each of these newxi is consed with the
same ai, according to (10.2), the best xi’s will always lead to the best so-
lutions. That is why we only need to consider the result of best for each
decomposition of subproblems.

If the set of decompositions associated with each subproblem is overlapping,
a naive evaluation of the derived program will involve much repeating work.
However, several declarative languages provide a built-in tabulation facility
where the solutions to subproblems can be implicitly recorded and retrieved
for subsequent use, and with such evaluation the derived program would
have polynomial rather than exponential time complexity.

Notice that such implicit tabulation would not reduce the time complexity
of the original specification in the same way; this is because the specification
produces a bag with all the solutions and if there are exponentially many of
them, the best predicate must take exponential time.

Similarly, the Greedy Theorem is used to check whether one can solve an
optimisational problem by a greedy algorithm, and for the positive instances
to derive this algorithm from the specification. While the dynamic theorem
allows us to improve the efficiency of the specification by only considering
the best partial solutions for each decomposition, the greedy theorem goes
much further: the derived greedy program arrives to the optimal solution by
only computing the best partial solutions of one, best, decomposition at each
recursion level. Obviously, the conditions required by this theorem must be

139



rather strong, since we need an additional ordering which will provide us
with a hint exactly which decomposition to use, based on local information.

There are actually two greedy theorems, one for fold and one for unfold ,
and here we choose to present only the one relevant for our examples, based
on unfold . If the monotonicity condition (10.2) is satisfied, and if we can
find a preorder q defined on pairs which represent problem decompositions,
such that:

q((ai, ini), (aj, inj)) ∧ unfold (step, base) (outj , inj) ⇒
(∃outi. unfold (step, base) (outi, ini) ∧ r ([ai|outi], [aj|outj ])).

(10.3)

Then the following program segment:

g (in, out) =

(∃x, bag. bagof (x, unfold(step, base) (x, in), bag) &

best (r, bag, out)),

can be refined to:

g (in, out) =

out .= nil

‖ (∃x, a, a1, bag1. out .= [a1|newx1] &

bagof ((a, x), step((a, x), in), bag) &

best (q, bag, (a1, x1)) & g (x1,newx1)).

As in the dynamic theorem, the condition (10.2) enables us to consider only
the best partial solutions for each decomposition. Even better, only the best
decomposition is needed, and the greedy condition (10.3) uses q to chose
this decomposition, say, (ai, ini). In cases where the input is such that best
matches more than one element in bag , we can refine this program further
by replacing best with a predicate onebest which is matched only once.

Note that q is an ordering on decompositions, while r is an ordering on
results. If we have an ordering q such that for any pair of decompositions, say
(ai, ini) and (aj , inj), if (ai, ini) is preferred to (aj, inj) by q, then we know

140



the following: for any possible outcome outj of the inferior decomposition,
we can find at least one outcome outi of the superior decomposition, such
that the total result [ai|outi] will be better than [aj |outj ], according to the
ordering r. This is why, in the derived program, we can after each step
safely chose the best decomposition (a1, x1) according to q, and recursively
apply g only to this optimal decomposition without considering others.

On the continuum of the optimisation problems that satisfy the principle of
optimality, on one extreme we find the problems requiring dynamic program-
ming, and on the other problems that can be solved by greedy algorithms.

Some problems fall between these two extremes of all and one: in [18] there
is a refined dynamic theorem with an additional condition which allows us to
move away from the “all” extreme to “some”, where an additional preorder
is used discard some of the decompositions, and pursue only those which
incorporate all the potentially profitable solutions. This approach is called
“thinning”.

We have previously mentioned that two distinct forms of greedy theorem
exists, one for problems defined in terms of fold and one for those defined in
terms of unfold . The dynamic theorem, however, only works for problems
specified with unfold . Problems that satisfy the principle of optimality and
require a specification in terms of fold can be solved by the Thinning

Theorem. This theorem specifies a monotonicity condition that can be used
to discard some of the unprofitable decompositions in the derived program.

Assume that we have preorders r and q respectively on solutions and on
problem decompositions, with the following specifications. The preorder
q is a sub-relation of preorder r, meaning q(x, y) ⇒ r(x, y), and it is not
necessarily connected. The predicate step is monotonic (as in (10.1)) on the
converse of q, which we denote by q◦.

Furthermore, assume that we have predicates thin and pow , with the fol-
lowing specifications. The predicate thin(r, xs, ys) holds if ys is a subset of
xs and ∀x ∈ xs. ∃y ∈ ys. r(y, x), that is, for each solution in xs there is a
better solution in ys. Finally, pow(p, (a, xs), y) holds if ∃x ∈ xs. p((a, x), y),
that is, if p applied to some arbitrary element of x of xs yields y. Then the

141



program:

t (in, out) =

(∃x, bag. bagof (x, fold (step, base) (in, x), bag) &

best (r, bag, out)),

can be refined to:

t (in, out) =

(∃bag. fold (tstep, [base]) (in, bag) &

best (r, bag, out)),

where the auxiliary predicate tstep is defined as:

tstep ((a, as), ys) =

(∃x, xs. bagof (x, pow(step, (a, as), x), xs) &

thin (q, xs, ys)).

The motivation here is that we promote bagof in fold , so that we can thin it
at each recursion stage. At each stage, we use a pow operator to apply step
in all possible ways to the bag of partial solutions, then collect the results.
The role of thin is to use the preorder q to shrink the size of the bag of
solutions.

The specification of thin(q, x, y) in effect means that if an element in x is
worse than some other element with respect to q, then by monotonicity we
need not keep it in y. Obviously, this specification allows thin to return its
input unshrank, and in that case the derived program is as inefficient as the
specification. To gain from this refinement without relying on tabling, we
need to find a q that removes a considerable portion of the bag of the partial
solutions. On the other hand, if we manage to find a q so strong that it is
a connected preorder, we can simply keep the best partial solution at each
stage, which would correspond to a greedy algorithm.

Finally, the premises for the three theorems are actually stronger than they
need to be, so both (10.2) and (10.3) can be additionally restricted. We
shall prefer to use these weaker conditions in section 10.6, so we define them

142



as well. A weaker form of (10.2) requires that xi and xj are composed from
the same seed in:

∃in. (unfold (step, base) (xi, in) ∧ unfold (step, base) (xj , in)) ∧ r (xi, xj)

⇒ r ([a|xi], [a|xj]) (10.4)

and, similarly, a weaker form of (10.3) requires that both (ai, ini) and
(aj , inj) are decompositions of the same input in:

∃in. (step ((ai, ini), in) ∧ step ((aj , inj), in))

∧ q ((ai, ini), (aj , inj)) ∧ unfold (step, base) (outj , inj) (10.5)

⇒ (∃outi. unfold (step, base) (outi, ini) ∧ r ([ai|outi], [aj|outj ]))

Now we go on to apply these three theorems to three classic optimisation
problems: dynamic theorem to the string edit problem, thinning theorem to
1/0 knapsack problem, and greedy theorem to the minimal lateness problem.

10.4 Dynamic programming example: string edit

Given two strings x and y, the string edit problem asks for the minimal
sequence of editing operations required to transform x into y. The choice
of the editing operations varies in different formulations of this problem,
and we choose the simplest possible set: insert a character into x, delete
a character from x, and copy a character in x, that is, retain it. These
three operations contain enough information to construct both strings from
scratch, if one interprets copy a as “append a to both strings”, insert a as
“append a to the right string” and delete a as “append a to the left string”.

We choose to represent the strings as lists of characters and the edit sequence
as a list containing pairs of (op, char), where op is one of ins del or cpy . Each
operation costs one unit, so the optimal edit sequence is one with a minimal
length. Since there might be more than one such solution, we choose the
first.

The string edit problem constructs the lists of editing instructions out by

143



means of an unfold from the seed (s1, s2), containing the two input strings:

edit ((s1, s2), out) =

(∃x, bag. bagof (x, unfold (step, (nil,nil)) (x, (s1, s2)), bag) &

best (lleq, bag, out)),

where the predicate step applies one editing instruction to the pair of input
strings, and the predicate lleq compares the lengths of two edit sequences:

step (in, out) =

(∃x, y, a, b. in .= ((cpy, a), (x, y)) & out
.= ([a|x], [a|y])

‖ in .= ((del, a), (x,nil)) & out
.= ([a|x],nil)

‖ in .= ((del, a), (x, [b|y])) & out
.= ([a|x], [b|y])

‖ in .= ((ins, b), (nil, y)) & out
.= (nil, [b|y])

‖ in .= ((ins, b), ([a|x], y)) & out
.= ([a|x], [b|y])),

lleq(x, y) =

(∃m,n. length(x,m) & length(y, n) &m =< n).

Obviously lleq is monotonic on cons, since consing an element to two se-
quences preserves the length comparison between them. So (10.2) holds and
we can apply the dynamic theorem, which results in the following program:

edit2 ((s1, s2), out) =

(s1 .= nil & s2 .= nil & out .= nil)

‖ (∃x, bag, bag1. bagof (x, step(x, (s1, s2)), bag) &

consmap (edit2, bag, bag1) &

best (lleq, bag1, out)).

Using XSB [119], or some other tabling Prolog system, edit2 can be auto-
matically tabled and the execution complexity becomes polynomial2 because
there are only m ∗ n different subproblems, where m and n are the lengths
of the two sequences. The complexity of the specification edit , on the other
side, would remain exponential even after tabling.

2Since we are tabling strings, lookups require string comparisons and are potentially
expensive, but these strings are prefixes of a fixed string, so we can use integers as keys.

144



10.5 Thinning example: 1/0 knapsack

Given n items, each of weight wi and of value vi, and a knapsack of capacity
K, the goal is to find the subset of items with maximal total value whose
total weight does not exceed K. The naive implementation of this problem
constructs all subsets of items within weight limit and returns the subset
with the greatest value; the size of the powerset of a set of n elements is 2n,
so the complexity of this algorithm is exponential in the number of items:

knapsack (w, in, out) =

(∃x, bag. bagof (x, fold (step(w), (nil, 0, 0)) (in, x), bag) &

best (vgeq, bag, out)).

The predicate knapsack(w, x, y) holds if y is the optimal way to select items
from the list x within weight w. We adopt a fold to capture the process of
examining all the items one by one. In each step we have two choices: to
ignore this item, or to add it to the bag if the total weight does not exceed
our limit:

step (w, (a, x), y) =

x
.= y

‖ (addone(a, x, y) & within(w, y)).

The explicit use of nondeterminism here is suggestive and we consider that
the relations of a logic programming language give us in this case a clear
notational advantage over conventional functional languages. The predicate
addone(a, x, y) holds if y is a partial solution gotten by adding the item a to
the partial solution x. The predicate within(w, y) holds if the total weight
of all the items in list y is within the weight limit w.

The auxiliary vgeq simply compares the values of two collections:

vgeq (a, b) = (∃va, vb. value(a, va) & value(b, vb) & va >= vb).

Since the specification of knapsack is expressed in terms of fold , we can
try to apply either the thinning or the greedy theorem. Optimally, we

145



would like to try to use the greedy theorem, since it results in the simplest
and the most efficient algorithm. Unfortunately, step is not monotonic on
vgeq . We cannot give up a selection of items just because it is less valuable
than another selection, because the step might not be able to add it to the
partially filled knapsack due to overflow.

However, we can identify a sub-relation q of value such that step is monotonic
on a converse of q. If a selection of items is not only less valuable, but also
heavier than another selection, then this choice of items is definitely not
leading to the optimal solution. Given an auxiliary predicate wleq which is
true if the weight of its first argument is less than or equal to that of its
second argument, we define q simply as the conjunction:

q (a, b) = vgeq (a, b) & wleq (a, b).

The proof that step is monotonic on q◦ follows directly from the definition
of step. If q◦(a, b) holds, then a has smaller value and greater weight than b.
Given a partial solution x, we can always find a way to use step to extend
it with these two items so that the resulting solutions, say xa and xb, are
related by q◦(xa, xb), i.e. so that the solution resulting from the less valuable
and heavier item will also be less valuable and heavier.

Thus, we know that we can apply the thinning theorem. Actually, a spe-
cial form of this theorem, known as the Binary Thinning Theorem, can be
applied in this case, because the definition of step has only two alterna-
tives. This theorem states that under the conditions described above, we
can derive the following program from our knapsack specification:

knapsack2 (w, in, out) =

(∃list. fold (step3(w), [(nil, 0, 0)]) (in, list) &

head (list, out)),

step3 (w, (a, x), ys) =

(∃y, bag1, bag2. bagof (y, pow(step1(w), (a, x), y), bag1) &

bagof (y, pow(step2(w), (a, x), y), bag2) &

merge (vgeq, bag1, bag2, bag) &

thin (q, bag, ys)).

146



Instead of referring to a theorem not presented here, we could have used
simple algebraic calculations to derive this program from the code resulting
from the original thinning theorem in a few steps. The sketch of the main
steps in this proof is as follows. First, best r is refined by a composition of
predicates sort r◦ and head , since taking the first element of the list sorted
in reverse order of r gives the optimal element. Then, the fusion theorem is
used to push sort into the fold , and the conditions of the fusion theorem are
used to calculate the composition of predicates bagof , merge and thin used
in the code above.

Let n be the number of items, and w their total weight. As discussed earlier,
the time complexity of the specification is O(2n). The derived program
computes step3 n times, once for each item in the input list. The size of the
bag in bagof is in this case bounded by the the total weight w because for
each weight the bag contains at most one element, and thin and merge are
easily implemented such that they are linear in the length of the input lists,
so the time complexity of the derived program is O(n ∗ w).

This problem is traditionally solved by tabling, where one builds a table
containing a row for each item and a column for each weight, up to the total
sum of the weights of all items. In each entry the best possible value within
the given subset of items and the given weight is recorded. Since the number
of entries is the product of the number of items and the total weight, the
running time becomes polynomial, so the complexities of the tabled program
and our program are comparable. However, unlike the tabling program, our
program also works for non-integer weights and values, but in that case the
running time becomes exponential.

10.6 Greedy example: minimal tardiness

The minimum tardiness problem is a scheduling problem from Operations
Research. Given a bag of jobs, it is required to find some scheduling of
it, that is, some permutation of the bag, that minimises the worst penalty
incurred if the scheduled jobs are not completed in their due time. Each job j
is associated with three quantities: the completion time ct(j, c), determining
how long it takes to complete the job; the due time dt(j, d), determining

147



the latest time before which the job must be completed; and a weighting
wt(j, w), measuring the importance of the job.

Given predicates bagify(x, in), which holds if x is some permutation of the
bag in, and costleq(a, b), which holds if the schedule a has a cost less than
or equal to the schedule b, the scheduling problem sche can be specified as:

sche (in, out) =

(∃x, bag. bagof (x, bagify(x, in), bag) &

best (costleq, bag, out)).

We can implement bagify using unfold with the auxiliary predicate bcons.
In one direction, bcons adds an item a to a bag x; used in the reverse way,
it nondeterministically picks an arbitrary item from the bag and pairs it
with the rest of the bag. With unfold , it can be used to generate all the
permutations for a bag. The predicate costleq is as expected:

bagify (y, x) = unfold (bcons,nil) (y, x),

bcons (x, ys) =

(∃a, z. x .= (a, z) & ys .= [a|z])
‖ (∃a, b, y, z. x .= (b, [a|z]) & ys .= [a|y] &

bcons ((b, z), y)),

costleq (x, y) =

(∃cx, cy. cost(x, cx) & cost(y, cy) & cx =< cy).

The cost of a scheduling is the maximum penalty of any scheduled job.
The relation penalty((j, x), p) below denotes that the penalty p is incurred
when the job j is performed after some jobs x. Notice that in this example
schedules should be read backwards, i.e. the last job is written at the head of
the list. If a job is completed before its due time, according to the definition
below its assigned penalty is negative, but since we only need to be concerned
with the maximum penalty, we choose to ignore negative penalties in the
definition of cost . To this end we use the predicate bmax which simply

148



relates the maximum of its first and second arguments to the third. Given a
predicate totaltime which calculates the time taken to complete all the jobs
in x by summing up their completion time, the definitions of penalty and
cost are:

penalty ((j, x), p) =

(∃c, w, d, tt. ct(j, c) & wt(j, w) & dt(j, d) &

totaltime(x, tt) & p is (tt+ c− d) ∗ w),

cost (x, c) =

(x .= nil & c
.= 0)

‖ (∃j, z, c1, c2. x .= [j|z] & penalty((j, z), c1) &

cost(z, c2) & bmax(c1, c2, c)).

As the number of permutations of a list is exponential in its length, the
above specification of sche takes exponential time to run. Fortunately, the
two conditions of the greedy theorem hold for this specification, so we can
derive a greedy algorithm for this problem. We give an informal argument for
their validity below, and a formal, calculational proof can be found in [18].

The monotonicity condition states that if the cost of a scheduling x is less
than or equal to the cost of scheduling y, attaching job j to both of them
does not change the ordering. In this example we find the weaker version
(10.4) easier to prove. Given a job j, schedules s1, s2, and a bag b, we claim
that:

(∃b. bagify (s1, b) ∧ bagify (s2, b)) ∧ costleq (s1, s2)

⇒ costleq ([j|s1], [j|s2]).

The premise (∃b. bagify(s1, b) ∧ bagify(s2, b)), also called the context, says
that both s1 and s2 are schedulings of the same bag of jobs b. For any
permutation of a bag of jobs b, i.e. any schedule resulting form b, the total
completion time must be the same. Therefore also adding the same job
to both schedules results in a same completion time. But the penalty of
[j|s1] only depends on the weight of j and the total completion time of s1,
so the penalties for doing j after s1 and s2 are the same. Since the cost

149



of a scheduling is defined to be the maximum penalty, the monotonicity
condition trivially holds.

Proving the greedy condition is trickier, and again we chose to prove the
weaker version (10.5). We need to invent an ordering which will help us
to choose the best job to pick in each stage. Formally, we need to find an
ordering q such that, for jobs j1, j2, bags b1, b2, b and schedules s1, s2, we
can prove:

(∃b. bcons((j1, b1), b) ∧ bcons((j2, b2), b))

∧ q((j1, b1), (j2, b2)) ∧ bagify(s2, b2)

⇒ (∃s1. bagify(s1, b1) ∧ costleq([j1|s1], [j2|s2])). (∗)

We claim that the ordering penaltyleq is the right choice for q, that is, that
in each step we only need to follow the decomposition with the least penalty
job:

penaltyleq (x, y) =

(∃px, py. penalty(x, px) & penalty(y, py) & px =< py).

We refer to the two parts in the antecedent of the greedy condition (∗)
as the context and the premise, respectively. The context of the greedy
condition states that (j1, b1) and (j2, b2) are decompositions of the same bag
b. Further, the premise penaltyleq((j1, b1), (j2, b2)) means that the job j1
after any scheduling of b1 incurs less penalty than the job j2 after any
scheduling of b2.

If the context and the premise hold, then, we argue, for any scheduling s2 of
the bag b2, there must exist some way to construct a schedule s1 out of the
bag b1, such that the total schedule [j1|s1] has lower cost than the schedule
[j2|s2].

The argument is as follows. Remember that the cost of [j1|s1] is the maxi-
mum of the cost of s1 and the penalty of j1. Regarding the cost of s1, notice
first that inserting a job into a schedule either keeps the total schedule cost
the same or increases it. Because both [j1|s1] and [j2|s2] are schedulings
of the same bag b, we can chose the schedule s1 to be the same as schedule

150



[j2|s2] without the job j1; then the cost of s1 must be less than or equal to
the cost of [j2|s2]. Regarding the penalty of j1 after s1, by the premise we
know that it is less than or equal to the penalty of j2 after s2.

And then, through a direct application of the greedy theorem, we derive:

sche2 (b, y) =

b
.= nil & y

.= nil

‖ (∃x, bag, j1, s1, b1. y .= [j1|s1] & bagof (x, bcons(x, b), bag) &

best (penaltyleq, bag, (j1, b1)) &

sche2(b1, s1).

The complexity of this is cubic in n, since there are totally n recursive
calls to sche2, in each call we need to examine among a linear number
of decompositions to pick the one with least penalty, and the calculation
of penalty also takes linear time (to sum up the completion time). We
could have refined the data structure such that computing the penalty takes
constant time, but we keep the code in this form to emphasise the structure
of the program described in the theorem.

For completeness, we finish this chapter with a few words about dynamic
programming in logic programming: traditional tabulation methods have
been successfully used to solve dynamic programming problems in logic pro-
gramming: examples of tabular logic programming systems include XSB
[119], DyALog [140], and B-Prolog [148]. There is an alternative approach,
advocated by Clocksin in [31], where recomputation is avoided by using
data-flow analysis at compile time; this approach is implemented for logic
programming in [22, 41]. However, they do not focus on algorithms; we do.

Finally, the three theorems in this chapter are presented in specialised forms
for lists. The more general form can be found in [18], where an optimisation
problem is represented as fold and unfold for any initial data-type. However,
not all dynamic programming or greedy algorithms can be expressed in terms
of fold and unfold . Curtis [36] generalises the model further to cover most
dynamic programming or greedy problems.

151



Chapter 11

Evaluation and Future Work

In the final chapter we summarise the work presented in this thesis, present
and discuss some areas of related work and outline possible directions for
further research.

11.1 Summary of the thesis and conclusions

The work presented in this thesis is a part of a research program which ex-
plores the application of algebra to program transformation and calculation
for declarative languages. In this case, the general conceptual advantage of
using an algebra, instead of using specific language semantics, is that many
different programming styles can be specified in the same formalism, so that
the approach elucidates similarities between the different declarative styles.
Also, the techniques presented hold for whole families of programs which
are found in each of the declarative styles.

Since the algebraic approach is closely related to the equational style of
functional programming, functional programs can be treated directly in this
setting, using a flexible range of formal analysis techniques and symbolic
simulation. Therefore, most of the work in the area of algebraic program
transformation has been focused on functional programming, where the re-
sults are plentiful. However, the other main family of declarative languages,
logic programming, has not yet been studied in this setting.

152



The objective of this thesis was to investigate whether the algebraic approach
to program transformation and derivation is similarly well-suited to model
and analyse logic programs.

In this thesis we have proposed and studied an embedding of pure logic
programs into lazy functional ones. This work was not aimed towards an
implementation of a new programming language, although a language im-
plementation based on the embedding is conceivable. Rather, this work was
directed towards producing and using a theoretical tool (with a simple im-
plementation) for the analysis of different aspects of logic programs. Our
three top-level goals were:

• the core implementation of the operators of the embedding,

• the operational analysis of the combinators of the embedding, and

• the application of the embedding to program transformation.

Each of these tasks turned out to be quite tractable in the embedding, in
the sense that they could be carried out in a reasonably straightforward and
self-explanatory manner. Indeed, this simplicity was the key idea and the
main strength of the embedding. The procedural semantics of the embed-
ded program proved to be both transparent and very close to the declarative
semantics of the original logic program. The embedding is abstract enough
to be flexible: it permits experimenting with different search strategies and
higher-order logic programs. It also facilitates reasoning about logic pro-
grams and can used to generalise the analysis of programs and program
transformation.

Based on this work, our two major conclusions are that:

• algebraic semantics is a suitable semantic framework for logic program-
ming; it facilitates a compositional approach to reasoning about logic
programs, and yields several interesting theoretical insights; and

• program transformation based on algebraic laws and higher-order func-
tions is more generic than the traditional methods employed for logic
program transformation.

153



On a pragmatic level, we found algebraic semantics an appealing tool for
reasoning about logic programs because it is based on a fairly natural and
well-known formalism, and because of its abstract modelling of the compu-
tation process and support for equational reasoning.

We also found that the two major practical advantages of our functional
embedding were, first, that it made expressible language principles that
are normally “outside” the language, such as properties of the predicate
operators & and ‖ which are implicit in logic program, and second, that it
was simple. We now expand on these results and conclusions, relating them
to the relevant chapters.

There have been several earlier research contributions exploring the algebraic
model of logic programming. The first one has been the work of Clark
on completion of logic programs [26], a transformation of a definite logic
program into an equational form, where the implicit logic operators that
form the logic program are made explicit. The original goal of this work
had been to allow negation in clause bodies. Although the completed form
of a logic program has been shown to be adequate for reasoning about logic
programs, since it preserves the semantics, this equational form had not
been, to the best of our knowledge, used for transfer of methodology from
functional programming. A variety of executable implementations of logic
programming in a functional setting are based on this result, notably [11,
63, 114, 117], but they did not attempt to exploit the full potential of the
algebraic framework. Nevertheless, this work also indicated that algebra is
indeed well-suited to modelling and analysing logic programs.

For building the embedding, we chose Haskell as a meta-language, in which
other languages – in this case several variants of logic programming, includ-
ing Prolog – were represented and executed. Specifically, the implementation
of the embedding extends the standard library of Haskell, and makes exten-
sive use of Haskell’s lazy and higher-order features. Besides giving a great
saving in implementation effort, the design of the embedding as an exten-
sion of Haskell also meant that the embedding inherited and extended the
rich algebra of Haskell, including laws for higher-order functions and many
important theorems, including those implied by the theory of [18]. Our ex-
perience was that it was rewarding to have a concrete, working prototype to

154



experiment with; and that the proofs of the proposed algebraic properties
were greatly simplified by only requiring the standard algebra of functions.

As an alternative to Haskell any polymorphically-typed lazy language and λ-
abstractions would do. Our implementation showed that any such functional
language contains much of the expressive power of functional logic languages,
but to achieve the full power of these languages further extensions (e.g. typed
unification) would be needed.

The implementation of the embedding was presented in Chapter 3. It was
implemented by translating each logic programming primitive to a function
or an operator. The implementation was centred on six functions, true, false
and .= for defining primitive predicates, and &, ‖ and ∃ for constructing com-
posite predicates from other predicates. In this manner we could implement
the substitutional operators and the search-control operators separately; so
this could be seen as a realisation of Kowalski’s slogan that programs are
logic plus control, bearing in mind that we deal only with the search strat-
egy of the “control part”, but not the selection rule. Our implementation is
arguably the simplest possible formalisation of different denotational seman-
tics of logic programming and can be thought of as an executable operational
semantics for logic programming. The embedding shows that any pure logic
program can be quite naturally and directly expressed as an executable
function.

The use of lazy lists in the implementation gives rise to a natural imple-
mentation of the possibly infinite search-space and the depth-first search
strategy of Prolog. We called this the depth-first model of logic program-
ming. In Chapter 5 we described how the embedding can be changed to
implement breadth-first search by lifting the operations to streams of lists,
where each list has one higher cost that the predecessor; we called this the
breadth-first model . Further, we offered a third, more flexible model based
on lists of trees which accommodates both search strategies; we called this
the general model of logic programming. We found that the the changes
required to implement each of the different search models were small and
simple, and that the polymorphism and higher-order functions of Haskell
simplified this task further; this was a substantially more pleasant situation
than the one faced by implementors of different search strategies in deep

155



embeddings, such as interpreters based on LD-resolution.

Our deliberately minimalist approach laid bare the algebraic laws of logic
programming. In Chapter 4 we have derived a set of algebraic laws serving
as a specification of the basic operators of the embedding. These laws were
chosen such that they respect the operational behaviour of logic programs
as well. For example, the predicate false is a left zero for &, but the &

operator is strict in its left argument, so false is not a right zero. The &

operator distributes through ‖ from the right, but not from the left. Other
identities that are satisfied by the connectives of propositional logic are
not shared by our operators because in our stream-based implementation,
answers are produced in a definite order and with definite multiplicity. This
behaviour mirrors the operational behaviour of Prolog, and as it turns out,
more generally SLD-resolution with a left-most selection rule under any
search strategy.

However, the embedding and the laws also exposed this operational be-
haviour in a compositional manner, and made it explicit in an equational
setting. Therefore we could make it subject to algebraic methods for rea-
soning about operational properties of programs, search strategies, and pro-
gram transformation. Many properties of logic programs, for example, the
associativity of append in fair search models, were easily expressed in the
embedding, because of explicit scoping; on the other hand, in a Prolog set-
ting, expressing this property would require some awkward coding using
additional parameters.

Our approach is in a contrast to the standard methods used for reasoning
about Prolog, or other logic programming languages. They are traditionally
explained in terms of their declarative and operational semantics, where for
a given logic program, these are respectively considered its specification and
its model of execution. One of the main attractions of logic programming
is its abstract and simple declarative semantics, but this semantics does
not allow for reasoning about the results of a concrete query to a concrete
logic program. The operational semantics does permit such reasoning, but
it is generally too low-level for equational reasoning. We have shown that a
semantics based on algebra can, to some extent, fill the gap between these
other two semantics.

156



We have thus developed three different implementations of a logic program-
ming language. In comparing their logical and computational properties
we have concentrated on those algebraic laws which are shared in all three
execution models, and in this sense the three models proved to be strongly
consistent with each other and with the declarative reading. In Chapter 6
we used concepts from category theory to formalise the relationship between
the three models, by defining three semi-distributive monads – extensions of
the stream, matrix and forest monads – that satisfy certain laws and that
capture each of the computation models. Then we proved the existence
of unique mappings between the monad corresponding to the most general
model and the other two monads, where the two mappings correspond ex-
actly to the depth-first and breadth-first traversal of the search tree of a
logic program.

Finally, we have also proved the forest monad to be the initial object of
this category of search monads; this corresponds to the fact that the general
search model sums up all the information that is common to all the elements
in the “category of search-strategies” in logic programming. This means that
any search strategy that is compositional, meaning that it obeys our list of
laws for the explicit logic operators, can be obtained by searching the tree.

In order to use the algebraic framework of the embedding for purposes of
modelling and reasoning about logic programs, we also needed to show that
our implementation of the embedding and the resulting algebraic specifi-
cation preserve the standard understanding of pure logic programs. We
showed that our algebraic semantics complements more abstract semantics,
such as Least Herbrand Models, as well as more concrete, execution-based
ones, such as LD-resolution, by providing:

1. the possibility of executing, and deriving, correct implementations
from the equational form by simulating LD-resolution;

2. a precise mathematical model of the system against which more ab-
stract specifications, such as the set-based Least Herbrand Model se-
mantics, can be proved correct by means of inductive reasoning; and

3. support for formal reasoning and analysis at the equational logic level,
such as symbolic simulation, and transformation, derivation, and a

157



wide range of formal methods for the analysis of programs.

We addressed the first point in Chapter 7. Our argument for the correct-
ness of the embedding with respect to LD-resolution was indirect : first, in
Chapter 6 we showed that our algebraic laws are provably correct for all
the models of the embedding, and second, in Chapter 7 we showed that
the algebraic laws can be used to simulate LD-resolution. This also entails
the soundness and completeness of the embedding with respect to the Least
Herbrand Model semantics for logic programs.

To summarise our argument for the operational validity of our transforma-
tions of logic programs: in Chapter 3 we have shown how to translate into
Haskell, in a compositional way, the fragment of the first-order logic which
corresponds to pure logic programs. Next, the laws concerning these trans-
lations of the formulas were stated and proved in Chapter 4. Finally, in
Chapter 7 we prove in Theorem 7.1 that the successful outcomes of the LD-
resolution can be simulated by means of the algebraic laws of Chapter 4.
These laws allow us to transform a given query in presence of the completed
definition of the program in question to the equational representation of
the computed substitution. Theorem 7.2 provides this result. Theorem 7.1
also guarantees that for each transformation of a query to the equational
representation of the computed substitution there corresponds a successful
LD-derivation.

We addressed the second point in Chapter 8. There we showed that pred-
icates have a set based reading which corresponds to the Least Herbrand
Model for the predicate, and that the operators of the embedding preserve
this reading. We also related the embedding to the denotational semantics of
first-order logical formulas given by Apt in [3], and to the operational seman-
tics of first-order logical formulas given by Apt and Bezem in [5]. We argued
that our embedding conforms to both of these semantics for the restricted
case of logic programs and Herbrand interpretations, and can therefore used
to help in bridging the gap between the more abstract semantics and the
operational one, showing their equivalence in the case of logic programs.

After showing that the algebraic semantics is a suitable semantic framework
for logic programs, we investigated how well the analysis and transformation

158



methods of algebraic semantics, already known to work well for functional
programming (see for example [15, 16]), specialise to logic programs. For
this purpose, we have chosen two groups of examples: one consists of well-
known problems of program transformation, where standard techniques are
used, and the other of optimisation problems, for which the equational trans-
formations are less widely known.

In Chapter 9 we described the algebraic transformation methods for the first
group, covering the unfold/fold technique, accumulating parameters, and the
transformation of generate-and-test programs. These examples have already
been studied for logic programming, but we believe that our treatment is
simpler and more generic than the previously used rules-and-strategies ap-
proach. In addition, our treatment highlights the algebraic similarities be-
tween functional and logic programming. Finally, the algebraic transforma-
tions can now be related to the underlying operational semantics, allowing
one to argue about the preservation of computational properties such as
termination. This relationship has not been explored before in the case of
logic program transformation.

We found that there are two main practical advantages in using our func-
tional embedding for transformation of logic programs. The first one is that
it allows us to reason about logic programs in a simple calculational style,
using rewriting and the algebraic laws of combinators; equations work bet-
ter in this setting than implications. The second, and the more important
advantage, is that many predicates are easily expressible using higher-order
functions that can take predicates as arguments. The appropriate trans-
formation strategy became obvious once we presented the predicates in a
higher-order form using folds, and we could readily apply the ever impor-
tant fold laws, such as the fusion law.

The examples we studied in Chapter 10 proved that the algebraic approach
to program transformation is truly general, in the sense that the methods
apply to whole families of examples, and to a large variety of such groups of
examples. The case studies we have undertaken have been the specification
and analysis of the 1/0 knapsack, the string edit, and the minimal tardiness
problems. These algorithms arise in a variety of real-world problems, such as
DNA-sequencing, natural language processing, and operations research, and

159



therefore present challenging specification and analysis problems of a kind
typically not included in formal methods for logic program transformation.

To perform these transformations, we have used the embedding to translate
all examples from a logic to a functional setting. We have then used the
algebraic representation to analyse the examples, and to select and apply the
appropriate program transformation strategy. We found that in each of the
three examples, the particular transformations arise from a straight-forward
application of respective theorems from the Algebra of Programming in [18].

We found that, while the traditional approach views dynamic programming
and greedy algorithms as separate and unrelated, the approach we take
from [18] relates them to the same specification and thereby also makes clear
the differences between the two strategies. Further, this approach made it
easier to derive the efficient algorithms from the common specification, thus
achieving two things: it helped us to write clear and efficient code and made
us aware of the algorithmical issues.

These examples have also taught us a lesson about the expressiveness of the
two programming styles, and of our embedding. We would argue that the
problems studied here make a good case for functional logic programming
languages, as we found that we needed the best of both worlds for a simple
and clear presentation. Originally we wrote the examples in HiLog [24], a
higher-order logic programming language which supports tabling (in XSB).
This language provided relations and non-determinism, which were required
by the theorems and the examples. In [18] the examples are written in
Haskell, and non-determinism had to be simulated. Also, the predicate bagof
and the use of logical variables were a big convenience. On the other hand,
higher-order functions are essential for the derivations, and we find that the
call notation is somewhat cumbersome. In HiLog we also missed currying,
and types were needed to make the theorems more intuitive, because many
of our predicates use sets with non-trivial structure.

In summary, a language that incorporates these features would be the perfect
tool for declarative algorithm derivations. There exist several good candi-
dates, such as Mercury, Curry, Oz or Escher, but one does not even need
to go that far: as we have shown, our embedding can add all the desirable
relational features to, say, Haskell, for a cost of a few dozen lines of code.

160



Even bagof came for free in our setting. The present simple implementation
of the embedding posed problems for the treatments of arithmetics and we
missed built-in operators; however, this is not a conceptual problem, just a
programming one.

11.2 Related work

Translating logic programs into functional ones, or to the related area of
term rewriting systems, has long been a subject of investigation. The litera-
ture presenting a translation from logic to functional programs, or rewriting
systems, is divided into two main groups. One group focuses on translations
where nondeterminism or failed computations are not permitted. They do
not concern themselves with the search-related issues, and they are mainly
interested in using the translated form of the program for proving proper-
ties, such as termination, of the original logic program. The other group
study the extent to which the full computational mechanism of a logic pro-
gram is preserved, and most often provide implementations of a Prolog like
LD-resolution with depth-first search, in which failure and multiple answers
are allowed.

The earliest translations were motivated by a better insight on the relation
between functional and logic languages, and belong to the second group
mentioned above. Reddy [108, 110] and Robinson [116, 114] described in
the mid-eighties translations of logic programming languages to functional
programming languages.

The next generation of translations belongs to the first group above, focus-
ing on using the translation to rewriting systems for proving logic program
properties, most often termination. However, all these translations impose
the restriction that the original logic program must be well-moded or simply
moded , a property which can be considered ‘the functional core of logic pro-
grams’. Such logic programs have a straightforward left-to-right dataflow
model and prohibit the use of logic variables in complex data structures
such as difference lists. As stated by Etalle and Mountjoy in [46], ‘It is
now widely accepted that “complex” logical variables, the possibility of a
dynamic selection rule, and general properties of non-well-moded programs

161



are exclusive features of logic programs. This is not quite right.’ We return
to [46] later.

For example, Krishna Rao, Kapur and Shyamasundar present in [71] a ter-
mination preserving, but complex, translation of well-moded logic programs
into unconditional rewriting systems. Ganzinger and Waldmann [51] de-
scribe a simple translation of well-moded logic programs into conditional
rewriting systems and a criterion of quasi-reductivity as a method to derive
whether a logic program terminates in a unique result. Marchiori describes
in [82] a termination preserving, but complex, translation from well-moded
and simply-moded logic programs to term rewriting systems, and Arts and
Zantema describe in [7] a translation of logic programs into constructor
systems, and a method for proving the termination of constructor systems
which implies the termination of the original program. Finally, also in this
group, van Raamsdonk presents in [139] a translation similar to that of
[51], where a well-moded logic program is translated into a termination pre-
serving conditional rewriting system with explicit substitutions. The paper
contains also a correctness result relating a successful resolution sequence to
a rewriting sequence resulting in a normal form expression containing the
single computed answer substitution.

Our work belongs to the other group, since we explicitly choose to deal
with nondeterminism and logic variables. As already mentioned, Reddy was
the first to show [108, 110] that many logic programs can be translated
in a straightforward way into functional programs using list comprehen-
sions. He used mode annotations, specifying which arguments are expected
to be ground, to turn relations into functions; he thereby restricted the class
of logic programs used in translations. The languages LogLisp and Super
[30, 114, 116] of Robinson use a compositional approach similar to our em-
bedding, in that an existing functional language (Lisp) is used to model the
behaviour of logic programs, and a set of logic programming primitives is im-
plemented as functions. Wand presents in [147] another compositional em-
bedding of Prolog into Scheme. On a more abstract level, Baudinet presents
in [11] a model-theoretic, denotational semantics for logic programs that is
equivalent to the denotational semantics which arises from our embedding,
as described in Chapter 8; she also expresses cut in this semantics, and uses
the semantics to analyses termination of queries. Hinze presents in [63] a

162



translation of nondeterministic logic programs in Haskell, using a monadic
approach. His translation appeared approximately at the same time as ours,
and the two transformations are quite similar, but we use them for different
purposes. We focus on applications of the embedding for program trans-
formations; he focuses on its application to program termination analysis,
and uses it as an example of the expressiveness of monads in Haskell. In
[85, 86] McPhee and de Moor propose a system for compositional logic pro-
gramming; however, their focus is more on implementation whereas ours is
on applications to program transformation. Billaud [14] describes the list
of algebraic laws that capture depth-first search, the same list as our laws
for & and ‖, but he does not generalise to the other basic operators in the
completed form of a logic program, and he does not generalise to the other
search models.

In [117] Ross proposes a compositional algebraic semantics for Prolog, based
on the process algebra CCS, but he is not concerned with other search strate-
gies or program transformation. Also, in [58], Hamfelt, Nilsson and Vitoria
present a compositional embedding of pure logic programs into equational
programs, using a point-free style of Bird and de Moor [18] and quasi higher-
order predicates to implement the logic operators, and prove this semantics
equivalent to the usual Kowalski-van Emden fixpoint semantics of logic pro-
grams. We believe that our Haskell embedding and the operational seman-
tics arising from our embedding are simpler. The similarities continue on
a denotational level: [58] identifies a canonical form of predicates involving
only combinators for conjunction, disjunction and generalised projection,
parallel to our operators &, ‖ and ∃, with the corresponding denotational
semantics, respectively intersection, union, and an operation corresponding
to a projection on the Herbrand universe.

We discuss in some length the relationship of our work to [46], since it is
the most recent translation-oriented work we have found to date. In [46] a
literal , syntactic, translation of consistent logic programs to Haskell is pro-
posed; no restrictions to well- or simply-modedness of logic programs are
made, but they assume that arguments are moded. Our paths diverge from
the very start, since they do not consider logic programs which may return
more than one answer, stating that ‘such programs are intrinistically logic
programs and therefore do not belong to our target’. They subsequently

163



discuss the relationship between lazy evaluation and logical variables, dy-
namic scheduling, and nondeterminism, and our standpoints differ on all
of these. They view logical variables as an exclusive feature of logic pro-
grams; our work does not elaborate upon this point, but we use “complex”
logic variables such as lists throughout our examples. Concerning dynamic
scheduling, [46] state that ‘the lazy computing mechanism compensates for
the lack of control over dynamic scheduling’; we discuss this issue in some
length in Chapter 3, where we argue why it is more difficult to vary the
selection rule than the search strategy, and we point to the work of McPhee
[85] for a deeper analysis of dynamic selection rules in a lazy functional set-
ting. About non-determinism [46] state that only input discriminative non-
deterministic logic programs may be “safely” translated to Haskell, where
this property guarantees that for any consistent query corresponds to an
SLD-tree with only one successful branch. They do mention that multi-
ple answers can be returned can be returned by a list of successes, such as
advocated by Wadler [141] and used by us, or Reddy [108, 110], Robinson
[114, 116] and others. However, the position of [46] is that nondeterminism
should be considered a peculiarity exclusive to logic programming. They
imply that this restriction to determinate programs is necessary to obtain
an ‘literal translation in which the computational mechanism of the result-
ing functional program is as similar as possible to the one of the original
logic program.’ Our view is that this restriction is not necessary, since our
embedding has provably the same computational model, LD-resolution, as
the original logic program, and in addition allows a variation in the search
strategy, while allowing nondeterminism.

Another large area of related work is the transformation of logic programs.
As discussed in Chapter 9, the work in logic program transformation can be
divided in two main categories: approaches based on “rules and strategies”,
and approaches based on “schemata”. For an excellent survey of these tech-
niques, see [98] by Pettorossi and Proietti. In short, the rules and strategies
approach has a set of fine grained, elementary rules, and the application
of these rules is guided by strategies, metarules which prescribe suitable se-
quences of applications of rules. The central rule in this technique is “unfold-
fold”, originally introduced by Burstall and Darlington already in 1977 in
[23]. In the alternative approach, based on schemas, the program derivation

164



is guided by recognition of higher-order clichés, that is, recursion schemes
of universal nature. Traditionally, schemas are expressed in a first-order
setting, so a program schema is an abstraction of a program, where some
terms, goals and clauses are replaced by metavariables. In the extensive
existing literature, the schema transformations deal with recursion removal
and the reduction of nondeterminism in generate-and-test programs. Our
style of program transformation is somewhere between these two groups. It
is similar to the schema approach, where the schemas in our case correspond
to applications of theorems regarding fold operators. However, we do not
transform whole programs at once, just parts of predicates. On the other
hand, our algebraic laws can also be viewed as the rules from the rules and
strategies approach; in that case, applications of theorems about fold oper-
ators correspond to strategies. Therefore we choose to not adhere to this
division in this summary of related work, but to rather address some of the
more recent results in program transformation.

In [100], Pettorossi and Proietti present the syntax and operational seman-
tics for a higher-order logic programming language, which is an extension of
a definite logic program with goals as predicate arguments. This allows them
to apply some of the ideas from higher-order based transformations [18] or
continuation based transformations [146] in functional programming. They
provide a set of transformational rules together with a correctness theorem,
which ensures that if a goal succeeds or fail in the given program, then also
the derived program succeeds or fails; however, they do not preserve com-
puted answers. They do not seem to deal with termination in the general
case, but rely on the operational semantics based on universal termination.
In such semantics, the meaning of a goal is defined iff all LD-derivations
starting from that goal are finite. Our transformation technique preserves
termination and the computed answers.

Transformation of definite logic programs has also been extensively studied
by Bossi and Cocco. In [20], they study the correctness conditions for fold-
unfold transformations in left terminating logic programs. A logic program
P is left terminating iff all ground goals universally terminate in P . They
present a transformational system which preserves the computed answers,
but the folding rule they present there requires exactly one clause whose
body is a conjunction of atoms. Since we deal with folding and unfolding

165



in an equational setting, we do not have to place such restrictions. Also,
[20] does not guarantee termination preservation. In [21], Bossi, Cocco and
Etalle present the sufficient conditions for the goal rearrangements to pre-
serve left termination. Our rules preserve general termination.

Hamfelt and Nilsson take a schema-oriented approach to program transfor-
mation, based on a higher-order form of logic programs and on theorems
relating the higher-order predicates. This approach is very close to ours,
also in the sense that they rely on these theorems not only for declarative
equality of the original and derived programs, but also on their procedu-
ral equality, in the sense that they compute the same answers and have
the same termination behaviour. In [56] they describe a set of higher-order
relational recursion operators, which is intended to cover all forms of recur-
sive predicate formulations met in logic programming practice. In [93] they
identify a class of primitive recursive list processing logic programs which
can be formulated using the relational counterparts of foldl and foldr from
functional programming. They prove the duality theorem connecting these
relational fold operators and their termination behaviour. Since they only
use higher-order relations which can be replaced by explicit recursions in
a pure logic program, they refer to them as quasi higher-order predicates.
A similar system of recursion operators for quasi higher-order predicates
was proposed simultaneously and independently in [52] for λprolog. In
[58] Hamfelt, Nilsson and Vitoria propose a compositional form of definite
logic programs, called Combilog, mentioned earlier. In this work they view
predicates as being formed by composition of basic predicates or program
defined predicates by means of combining forms functioning as higher-order
predicates. In [57] they apply a recursion schema based transformation ap-
proach to such compositional logic programs, and also come to the conclu-
sion that the higher-order representation may help support the declarative
understanding of logic programs.

Finally, Pettorossi and Proietti present in [105] a transformation strategy
based on the introduction of lists and higher-order predicates on lists; this
strategy can be viewed as a rules-and-strategies counterpart of our example
for derivation of efficient reverse.

As stated before, the transformational examples we present in this thesis

166



are taken from Bird and de Moor’s [18]. For most of these examples there
exists a substantial body of research, and we choose not to elaborate on
all of them. We focus on the work related to the derivation of the sorting
example.

Sorting algorithms are traditionally classified according to their main oper-
ational semantics, for example, whether they do sorting by insertion, par-
titioning and so on. More recently top-down program synthesis has been
used as a basis for classification. Darlington presents in [37] a family of six
sorting algorithms, where the classification is based on program transfor-
mation on recursion equations, using fold-unfold as the key transformation
rule. He derives and classifies quick sort , selection sort , merge sort , inser-
tion sort , exchange sort and bubble sort . Clark and Darlington derive in [28]
the first four algorithms listed above, using similar transformational rules in
a first-order predicate logic notation. Green and Barstow synthesise in [54]
the same six algorithms using the divide-and-conquer paradigm; they show
how their system can automatically construct the programs, and analyse
the facts and rules used in the process.

Smith describes in [127, 126] yet another method for derivation and clas-
sification of the first four sorting algorithms by top-down decomposition
of specifications into subproblem specifications, followed by a synthesis of
concrete program for the subproblems, and then a bottom-up composition
of these. The classification criterion is the design strategy chosen in the
decomposition and composition phases. Dromey uses in [44] Dijkstra’s con-
structive weakest pre-condition technique to derive sorting algorithm from
a specification which is in the form of a pair of pre- and post-condition, and
manipulating the post-condition. Lau and Prestwich derive in [73] the sort-
ing algorithms listed above and also bsort , radix exchange sort , distribution
sort , block bubble sort and external merge sort . Their approach is also based
on the fold-unfold rule, and describes the computation of a semi-automatics
logic programming system which produces a recursive logic procedure by
top-down syntheses from its given specification.

In Chapter 6 we refer to category theory in order to give a rigorous analysis
of the relationship between our three implementations. We do not aim to
give a categorical semantics to logic programming; however, this has been

167



done in several ways before, and we describe this area of work as the last
subtopic for our related work.

Category theory has been successfully used to give a mathematical treatment
of several aspects of the syntax and the semantics of programming languages
[101], such as types [35, 72], state [88, 89, 94, 130, 143], non-determinism
[96] or polymorphism [102]. The reason for the popularity of this approach
is that it captures the desired features in a generic and implementation
independent, yet rigorous, manner. For the same reasons, the categorical
approach has more recently been applied to logic programming features as
well.

The first logic programming feature analysed in a categorical setting was
unification, in a paper by Burstall and Rydeheard in [118]. Further, logic
programs were described in a topos theory by Aspetti and Martini [8] and
the syntax of Horn clause programming over the Herbrand Universe was was
formalised in first-order categorical logic. Logic program transitions and
structure were analysed and described using indexed monoidal categories by
Corradini, Asperti and Montanari in [33, 34]. Concurrent constraint logic
programming was treated in categorical setting by Panangaden, Scott, Seely
and Saraswat in [97]. Horn clause resolution was described via indexed
categories by Power and Kinoshita in [103]. Constraint Horn clause pro-
gramming was formulated using categories and institutions by Diaconescu
in [43]. The evaluation of a logic program was studied in a categorical frame-
work of types and realisability by Pym in [106]. A categorical treatment of
non-declarative extensions of logic programming, notably constraints and
uniform proof systems, based on a resolution system over finite product τ -
categories, has been undertaken by Finkelstein, Freyd and Lipton in [75].
Non-deterministic SLD-resolution proofs are represented as arrows in an ex-
tension of a base syntactic category, subject to certain categorical constraints
on data, by Lipton and McGrail in [69, 84]. However, all this research is
only marginally related to the work presented in this thesis. We only apply
category theory briefly, in order to make a formal argument that our list
of algebraic laws is “reasonable” and complete; our main goal is to use the
laws for program transformation, and not a thorough categorical analysis of
the logic programming paradigm.

168



Finally, the work presented here has been cited in the following two papers:
in [25] Claessen and Ljunglöf extend our embedding to incorporate func-
tional logic programming. In [137] Todoran and Papaspyrou give denota-
tional models to parallel logic programming languages, where the semantics
arises from a functional embedding akin to ours.

11.3 Functional logic programming

Our work is in some ways related to the area of functional logic program-
ming (flp), a style of programming which subsumes purely functional lan-
guages as well as pure logic programming. The integrated languages of flp

have more expressive power than functional languages due to features like
inversion and logical variables, and they have more efficient operational be-
haviour than logic languages due to deterministic evaluation. At present,
the research focus concerning such integrated languages is mainly on the
improvement of execution principles and efficient implementation for inte-
grated languages.

However, the major motivating factor behind this programming style lies
beyond the purely operational aspects of programming: it is to enable the
sharing of developments on many facets of declarative programming lan-
guage research between the two programming styles. Our work is closer in
intention to this aspect of unification of the two styles, and we believe that
our examples in the area of program transformation could help assure both
functional and logic programmers of the advantages of this unified style.

In order to easier contrast the approach taken by different flp languages
and our embedding, we now present a summary of the execution principles
of flp. This summary is based on Hanus [59], and on [13, 38, 77, 79, 112].

The integration of the operational principles of functional and logic program-
ming can be approached from both styles, but in both cases it yields similar
results. One way of allowing function definitions inside logic programs is
to treat functions as atoms with a special predicate symbol =, taking this
to mean “evaluates to” rather that the usual syntactic unifiability on the
two arguments. Such atoms are called equations. Then clauses, queries and

169



programs can be defined as in pure logic programming. Given a clause:

p0 ← p1, . . . , pn,

if p0 is an equation, this clause is also called an equation; if n > 0, it is called
conditional , otherwise it is called an unconditional equation. Equations are
always used from left to right, so they are also called rewrite rules. For
example, the function append can be defined with unconditional equations:

append([ ], x) = x.

append([x|a], b) = [x|append(a, b)].

Terms such as append([1], [2]) may be used as any other terms in pro-
grams containing these definitions. When such functional term only con-
tains ground terms, it is simply evaluated as a rewrite step. However, it
may also be non-ground, so we might have queries such as:

append(l, [2]) = [1, 2].

To compute such results in general one has two alternatives: either to search
for the right instantiation of the new variable l occuring in the condition, or
to delay the computation of such atoms until they are sufficiently instanti-
ated. The first approach is called narrowing and the second residuation.

The fundamental idea behind narrowing, as introduced by Slagle [125], is
to use unification rather than matching in the rewrite step, if the function
call contains free variables. The unification required to do this is computed
with respect to a set E of axioms, and is called E-unification. Unfortu-
nately, E-unification is undecidable even for simple equational axioms like
distributivity and associativity of functions. The practical solution to prob-
lems involving E-unification is to impose restrictions on the definition of
the equality predicate, that is, on the rewrite rules in the system. The
aim, then, is to find restrictions which are acceptable from a programming
point of view, and which ensure the existence of a usable algorithm. Such
restrictions often include confluence and termination of the rewrite rules.

In one step of narrowing, a non-variable subterm of the query is unified with
the left-hand side of some rule and the instantiated subterm is replaced by

170



the right-hand side of that rule. We refer to the subterm chosen for unifi-
cation as the narrowing position. A narrowing step from 〈q;σ〉 to 〈q′;ση〉,
with the unifier η, is denoted as:

〈q;σ〉�η 〈q′;ση〉.

For example, in order to solve append(l, [2]) = [1, 2], the second rule for
append is applied, followed by the first rule:

〈 append(l, [2]) = [1, 2] ; ε 〉
�{l/[x|a]} 〈 [x|append(a, [2])] = [1, 2] ; {l/[x|a]} 〉
�{a/[ ]} 〈 [x, 2] = [1, 2] ; {l/[x], a/[ ]} 〉

The final equation instantiates x to 1, so the computed solution is {l/[1]}.

Given a confluent and terminating set of rewrite rules defined by an uncon-
ditional set of equations E, narrowing is sound and complete in the sense
that each computed substitution is a unifier w.r.t. E, and for each unifier
w.r.t. E exists a more general computed substitution.

However, there is an obvious practical difficulty in the definition of narrow-
ing: if more than one left-hand side is unifiable with the selected subterm,
the evaluation must choose a suitable rule nondeterministically. To guaran-
tee completeness, each rule must be applied at each non-variable subterm
of the given query, and this yields a huge search space with many infinite
paths even for a small program. In order to use narrowing as a practical
operational semantics, further restrictions are necessary.

One possible restriction is called basic narrowing [67]. Here the narrowing
step may only be performed at a subterm which is not part of a computed
substitution, but belongs to an original program clause or query. Basic
narrowing is also sound and complete in the sense above, because searching
for narrowing positions inside substitutions is superfluous, but is still highly
nondeterministic.

For a restricted set of functional logic programs, called constructor-based
functional logic programs, the deterministic strategies of functional pro-
gramming can be simulated with innermost [49] and outermost [91, 109] nar-

171



rowing strategies, corresponding to eager and lazy evaluation in functional
programming. Another improvement is selection narrowing [19], where a
selection rule, similar to the selection rule of SLD-resolution, is employed
to select exactly one innermost position for each narrowing step. Leftmost
innermost basic narrowing, a combination of these three strategies, can be
shown to be equivalent to LD-resolution after appropriate translation of the
functional logic program into a logic one. There are further improvements
on narrowing which result in an execution mechanism that is superior to
LD-resolution.

Outermost narrowing is based upon lazy evaluation, where the next nar-
rowing position must be an outermost one, and is complete if the rule set is
confluent, terminating and if the selection strategy is well-behaved in a cer-
tain sense. Lazy evaluation allows infinite data structures; but if the rewrite
relation is not terminating, which is the case when infinite data structures
are involved, confluence also becomes undecidable, so a series of strong re-
strictions on the rules is required to ensure completeness. Finally, in the
case of conditional equations, conditional narrowing [68] is used.

With all forms of narrowing, an uninstantiated value of an argument must
be guessed in a nondeterministic way. The alternative is a reduction strategy
based on delaying evaluation of functions until it is possible in a deterministic
way, when all the arguments are sufficiently instantiated, so that they are
reducible to unique ground value. This mechanism is often called residuation
[136]. The basic operational semantics is SLD-resolution, with an extended
unification procedure in which any function call in a term is evaluated before
it is unified with another term.

This evaluation strategy seems preferable to narrowing since it preserves the
deterministic nature of functions. For example, the query

append([1], l) = [x], l = [2].

solves the first literal by producing the residual append([1], l) = [x], which
will be proved or disproved as soon as the variable l becomes ground. After
solving the second literal l = [2], the residual append([1], [2]) = [1, 2] can be
proved true, binding x to [1, 2] in the process.

172



This delay principle is satisfactory in many cases, but is incomplete in gen-
eral. The evaluation may result in an infinite derivation path, generating
infinitely many residuals, and even if these residuals become together un-
solvable at some point in the derivation, this is not detected since they are
simply delayed. On the other hand, a functional logic language based on
narrowing can solve such a query in a finite search space.

11.4 Further work

As with any research, more work can always be done. There are also some
weaknesses of the approach taken here. Maybe the most important defi-
ciency of this approach is the expressiveness and the implementation of the
embedding. We have chosen to focus on methodological issues so simplicity
of the embedding was therefore a priority. The result of this choice is that
the current implementation is too slow for any practical purpose, and that
it does not have the full power of functional logic programming languages.
Further, we have automated neither the translation of logic programs nor
the program transformation techniques. We hope to address the last issue in
the future, as pointed out below. Another possible criticism is that we have
chosen to list a small (but complete) set of basic algebraic laws that can
be used for program transformation, rather than explore the “schemas” or
“strategies” beyond the standard fold-theorems from the functional setting
of Haskell.

We devote the rest of this section to outlining the most promising directions
such further work could go in. Some are extensions of the embedding that
will require some conceptual ground-work but should otherwise be just a
matter of implementation, and some are open problems.

An embedding of a functional logic programming language. This
embedding could be achieved by extending the embedding. We can
implement something similar to the residuation approach in our em-
bedding by letting the predicates in the embedding be functions from
sets of constraints to sets of constraints. We would like to see what
algebraic properties such a language has, and see whether we can find

173



some interesting examples for program transformation, similar to the
ones presented here.

An embedding of a constraint programming language. This is also
achievable without major changes to our embedding. Based on our
embedding and our discussions at ICLP’99, Stuckey [135] has imple-
mented an embedding of a simple constraint programming language in
Haskell. After this implementation, Stuckey remarked that this imple-
mentation was superior in efficiency to a previous one which he imple-
mented with Wadler, based on a monads in Haskell. Apparently, even
though simpler, the approach based on the embedding avoids the un-
necessary copying of the constraint store. There are several promising
research avenues based on this implementation: our favourite ones are
an algebraic specification of a constraint language, and subsequent ap-
plications the program transformation from functional programming.
Both the implementation and the examples may help functional pro-
grammers realise how close this constraint-based style is to functional
programming, and might lead to a further cross-fertilisation of the
methodologies for these declarative styles.

An embedding that incorporates Haskell’s type system. Ideally, it
would be nice to be able to mix Haskell’s term types within one
Prolog-like piece of code, thus supporting a “typed logic program-
ming” paradigm in Haskell. This topic connects to the rich literature
on modular semantics through monadic interpreters in Haskell. In-
deed, this idea is explored and implemented in [25], which is based
on our embedding presented in this monadic manner. In this work all
the types are introduced individually, by introducing a new monad for
each “by hand”. We are interested in exploring alternative approaches,
possibly based on dependent types.

An efficient implementation of the embedding. At present, the em-
bedding is intentionally simple but slow, and should be thought of
as a prototype for a more efficient implementation. This implemen-
tation would be achieved by making the operators of the embedding
primitives in the functional language, instead of them being library
functions. The challenging problem here is that the built-in substitu-
tions and unification must interact correctly with laziness.

174



A better timing-analysis of the logic programs. At the moment we
have an informal approach to the efficiency of the original and the de-
rived logic program. We need better formal techniques for analysing
the time requirements of non-trivial logic programs, but this is not
easy because laziness is involved.

Automation of some examples. All the derivations of the more efficient
programs presented in this thesis are done “by hand”. The recent
work of Sittampalam and de Moor [40, 124] deals with a tool for an
automatic derivation of the more efficient program for some of the same
examples, in a functional setting. It is possible that this tool could be
extended to work on logic programming examples, or functional logic
or constraint programming as well, thorough the use of the appropriate
embedding.

Using the embedding to transfer other ideas. So far, we have focused
on program transformation. However, there are other areas of research
in functional programming that seem amenable to migration to other
declarative styles. For example, in [95], Okasaki presents a suite of ef-
ficient, purely declarative data-structures supporting features such as
random access or efficient catenation. Since the embedding is placed
in the same lazy setting of Haskell, it would be interesting to find out
how well such data-structures extend to logic programming.

Categorical analysis of search in recursive programs. Our analysis
in Chapter 6 does not consider recursive programs, since we do not
include a fixpoint operator in the definition of an extended monad,
that is, the definition of a search strategy. Haskell does not have
constructs for defining recursive equations over a monadic type, but
Launchbury, Lewis and Cook propose in [74] as an extension of Haskell
a special fixpoint operator mfix for monadic types. In [45], Erkök and
Launchbury pursue an axiomatic analysis of mfix, by postulating three
axioms that characterise the behaviour of mfix and show that these
are satisfied in several individual monads, called recursive monads.
It would be interesting to see whether our monads of search can be
turned into recursive search monads, following this approach.

Analysis of the computational complexity of predicates. In Chapter

175



7 we show that a finite number of computational steps in LD-resolution
can be simulated by a finite number of computational steps in our
embedding. The steps in the embedding are simulated by the alge-
braic laws, which preserve the operational behaviour of the embedding.
However, it is not clear whether these numbers of reduction steps are
always proportional, and it would be interesting to see whether we
can use th embedding to deduce a result about the computational
complexity of the original logic program.

The original purpose of the embedding was algebraic program transforma-
tion, but it proved to have many other interesting properties and theoretical
applications. As argued here, there remain many topics for further research
related to the theoretical, and practical, applications of the embedding; how-
ever, we believe that, to a large extent, the plethora of questions it opens is
one of the main attractions of this algebraic approach.

What we call the beginning is often the end
And to make an end is to make a beginning.

The end is where we start from.
T. S. Elliot, Four Quartets

176



Appendix A

Code for the Embedding

A.1 General types

> data Term = Func Func [Term] | Var Var
> type Func = String
> data Var = Name String | Gen Int

> type Subst = [(Var, Term)]

> type Predicate = Answer -> [Answer]
> type Answer = (Subst, Int)

A.2 Basic predicates and combinators

> no :: Predicate
> no x = []

> yes :: Predicate
> yes x = [x]

> infixl 6 |||
> (|||) :: Predicate -> Predicate -> Predicate
> (p ||| q) x = (p x) ++ (q x)

> infixl 7 &&&
> (&&&) :: Predicate -> Predicate -> Predicate
> (p &&& q) x = concat (map q (p x))

> eqn :: (Term,Term) -> Predicate
> eqn (t1,t2) (s,n) =
> case (unify s (t1,t2)) of
> Just u -> [(u,n)]
> Nothing -> []

> exists :: Int -> ([Term] -> Predicate) -> Predicate
> exists k f (s,n) = f vs (s, n+k)
> where vs = map makevar [n..n+k-1]

177



> neg :: Predicate -> Predicate
> neg p (s,n) = yes (s,n), if res == []
> = no (s,n), otherwise
> where res = p (s,n)

A.3 Integer and list modelling

> zero :: Term
> zero = atom "0"

> succ :: Term -> Term
> succ t = Func "succ" [t]

> cons :: Term -> Term -> Term
> cons x a = Func "cons" [x,a]

> nil :: Term
> nil = atom "nil"

> atom :: String -> Term
> atom a = Func a []

-- plus(X,0,X).
-- plus(X,S(Y),S(Z)) :- plus(X,Y,Z).

> plus :: (Term,Term,Term) -> Predicate
> plus (p,q,r) =
> (exists 1 (\ [x] -> eqn(p,x) &&& eqn(q,(Func "0" [])) &&& eqn(r,x)))
> |||
> (exists 2 (\ [x,y,z] -> eqn(p,x) &&& eqn(q,(Func "succ" [y])) &&&
> eqn(r,(Func "succ" [z])) &&& plus(x,y,z)))

-- minus(X,0,X).
-- minus(0,X,0).
-- minus(S(X),S(Y),Z) :- minus(X,Y,Z).

> minus :: (Term,Term,Term) -> Predicate
> minus (p,q,r) =
> (exists 1 (\ [x] -> eqn(p,x) &&& eqn(q,zero) &&& eqn(r,x)))
> |||
> (exists 1 (\ [x] -> eqn(p,zero) &&& eqn(q,x) &&& eqn(r,zero)))
> |||
> (exists 3 (\ [x,y,z] -> eqn(p,(Func "succ" [x])) &&&
> eqn(q,(Func "succ" [y])) &&& eqn(r,z) &&& minus(x,y,z)))

A.4 Auxiliary functions

> makevar :: Int -> Term
> makevar i = Var (Name ("x"++(show i)))

> prolog :: Predicate -> [String] -> String

178



> prolog p vars = print vars result
> where result = p startAnswer

> startAnswer::Answer
> startAnswer = ([],0)

> print :: [String] -> [Answer] -> String
> print vars ((s,n):others) = "no", if s==[]
> = "yes", if (vars==[] && not (s==[]))
> = instsubst s (filter (onlyinput vars) s) ++
> "\n" ++ (print vars others), otherwise
> print vars [] = ""

> onlyinput :: [String] -> (Var,Term) -> Bool
> onlyinput vars (v,t) = True, if member vars (varname v)
> = False, otherwise

> all :: [String] -> (Var,Term) -> Bool
> all vars (v,t) = True

> member :: [String] -> String -> Bool
> member [] x = False
> member (y:ys) x = True, if x==y
> = member ys x, otherwise

> varname :: Var -> String
> varname (Name v) = v

> instsubst :: Subst -> [(Var,Term)] -> String
> instsubst s [] = ""
> instsubst s ((v,t):others) =
> varname v ++ " = " ++ show (inst s t) ++ "\n"
> ++ instsubst s others

A.5 Substitutions and unification

> data Maybe a = Just a | Nothing

> tryfold :: (a -> b -> Maybe a) -> a -> [b] -> Maybe a
> tryfold f x [] = Just x
> tryfold f x (y:ys) =
> case f x y of
> Just z -> tryfold f z ys
> Nothing -> Nothing

> tryassoc :: [(a, b)] -> a -> Maybe b
> tryassoc [] x = Nothing
> tryassoc ((u,v):ps) x =
> if u == x then Just v else tryassoc ps x

-- subst s t is one step of applying a substitution

> subst s (Func f xs) = Func f xs

179



> subst s (Var v) =
> case tryassoc s v of
> Just t -> subst s t
> Nothing -> Var v

-- inst s t applies substitution s to term t: it
-- iterates to a fixpoint

> inst s t =
> case subst s t of
> Func f xs -> Func f (map (inst s) xs)
> Var v -> Var v

-- unify does unification relative to an exiting substitution

> unify :: Subst -> (Term, Term) -> Maybe Subst
> unify s (Var v, t2) = univar s v t2
> unify s (t1, Var v) = univar s v t1
> unify s (Func f a, Func g b) =
> if f == g then tryfold unify s (zip (a,b)) else Nothing

> univar s v t =
> case tryassoc s v of
> Just u -> unify s (u, t)
> Nothing -> if t’ == Var v then Just s else Just ((v,t’):s)
> where t’ = subst s t

180



Appendix B

Code for problems from
Chapter 9

B.1 General definitions

fold(_,E,[],E).
fold(P,E,[A|X],B) :-

fold(P,E,X,B1), call(P,(A,B1),B).

unfold(_,E,[],E).
unfold(P,E,[A|X],B) :-

call(P,(A,B1),B), unfold(P,E,X,B1).

best(_,[A],A).
best(R,[A,B|X],C) :- call(R,A,B), best(R,[A|X],C).
best(R,[_,B|X],C) :- call(R,A,B), best(R,[B|X],C).

onebest(_,[A],A).
onebest(R,[A,B|X],C) :- call(R,A,B), !, onebest(R,[A|X],C).
onebest(R,[_,B|X],C) :- onebest(R,[B|X],C).

merge(_,[],X,X).
merge(_,X,[],X).
merge(R,[A|X],[B|Y],[A|Z]) :- call(R,A,B),!,merge(R,X,[B|Y],Z).
merge(R,[A|X],[B|Y],[B|Z]) :- merge(R,[A|X],Y,Z).

thin(_,[],[]).
thin(R,[A|X],Y) :-

thin(R,X,Y1), bump(R,A,Y1,Y).

bump(_,A,[],[A]).
bump(R,A,[B|X],Y) :-

call(R,A,B) -> Y = [A|X] ;
call(R,B,A) -> Y = [B|X] ;

Y = [A,B|X].

consmap(_,[],[]).

181



consmap(P,[(A,X)|Y],[[A|NewX]|NewY]) :-
call(P,X,NewX), consmap(P,Y,NewY).

pow(P,(A,XS),Y) :-
member(X,XS),call(P,(A,X),Y).

head([A|_],A).

bmax(X,Y,X) :- X >= Y.
bmax(X,Y,Y) :- X < Y.

B.2 Definitions for string edit

%% the input strings (S1,S2) are given as character lists

%% Problem specification

edit((S1,S2),Out) :-
bagof(X,unfold(step,([],[]),X,(S1,S2)),Bag),
best(lleq, Bag, Out).

step(((cpy,A),(X,Y)), ([A|X],[A|Y])).
step(((del,A),(X,[])), ([A|X],[])).
step(((del,A),(X,[B|Y])), ([A|X],[B|Y])).
step(((ins,B),([],Y)), ([],[B|Y])).
step(((ins,B),([A|X],Y)), ([A|X],[B|Y])).

lleq(X,Y) :- length(X,M), length(Y,N), M =< N.

%% Refined dynamic programming algorithm

edit2(([],[]),[]).
edit2((S1,S2),Out) :-

bagof((A,X), step((A,X),(S1,S2)), Bag),
consmap(edit2,Bag,Bag1),
best(lleq,Bag1,Out).

B.3 Definitions for 1/0 knapsack

%% items should be declared in the form item(Name, Value, Weight).

%% Problem specification

knapsack(W,In,Out) :-
bagof(X,fold(step(W),([],0,0),In,X),Bag),
best(vgeq,Bag,Out).

step(W,(A,X),Y) :- step1(W,(A,X),Y).
step(W,(A,X),Y) :- step2(W,(A,X),Y).
step1(_,(_,X),X).
step2(W,(A,X),Y) :- addone(A,X,Y), within(W,Y).

182



addone(A,(NS,VS1,WS1),([A|NS],VS2,WS2)) :-
item(A,V,W), VS2 is V + VS1, WS2 is W + WS1.

%% The refined thinning algorithm

knapsack2(W,In,Out) :-
fold(step3(W),[([],0,0)],In,List),
head(List,Out).

step3(W,(A,X),YS) :-
bagof(Y,pow(step1(W),(A,X),Y),Bag1),
bagof(Y,pow(step2(W),(A,X),Y),Bag2),
merge(vgeq,Bag1,Bag2,Bag),
thin(q,Bag,YS).

%% Auxilary functions for problem specification

within(W,X) :- weight(X,WX), W >= WX.

value((_,VS,_),VS).
weight((_,_,WS),WS).

vgeq(A,B) :-
value(A,VA), value(B,VB), VA >= VB.

wleq(A,B) :-
weight(A,WA), weight(B,WB), WA =< WB.

q(A,B) :-
vgeq(A,B), wleq(A,B).

B.4 Definitions for minimal tardiness

%% jobs should be declared in the form job(Name, CT, DT, WT).

%% Problem Specification

sche(In,Out) :-
bagof(X,bagify(X,In),Bag),
best(costleq,Bag,Out).

bagify(Y,X) :- unfold(bcons,[],Y,X).

bcons((A,X), [A|X]).
bcons((B,[A|X]), [A|Y]) :- bcons((B,X),Y).

%% The refined greedy algorithm.

sche2([],[]).
sche2(B,[J1|S1]) :-

bagof((A,X), bcons((A,X),B), Bag),
onebest(penaltyleq,Bag,(J1,B1)),
sche2(B1,S1).

%% Auxilary functions for problem specification

183



ct(J,C) :- job(J,C,_,_).
dt(J,D) :- job(J,_,D,_).
wt(J,W) :- job(J,_,_,W).

penalty((J,X),P) :-
ct(J,C), wt(J,W),dt(J,D),
totaltime(X,TT),
P is (TT+C-D)*W.

totaltime([],0).
totaltime([J|X],T) :-

totaltime(X,T1), ct(J,T2), T is T1+T2.

cost([],0).
cost([J|X],C) :-

penalty((J,X),C1), cost(X,C2), bmax(C1,C2,C).

costleq(X,Y) :-
cost(X,CX), cost(Y,CY), CX =< CY.

penaltyleq(X,Y) :-
penalty(X,PX), penalty(Y,PY), PX =< PY.

184



Bibliography

[1] Antoy, S. Lazy evaluation in logic. In PLILP 91, Passau, Ger-
many (1991), vol. 528 of Lecture Notes in Computer Science, Springer-
Verlag, pp. 371–382.

[2] Apt, K. R. From Logic Programming to Prolog. Prentice Hall, 1997.

[3] Apt, K. R. A denotational semantics for first-order logic. In Proc.
of the Computational Logic Conference (2000).

[4] Apt, K. R. The logic programming paradigm: A tutorial. lecture
notes, May 2000.

[5] Apt, K. R., and Bezem, M. Formulas as programs. In The Logic
Programming Paradigm: a 25 Years Perspective, K. R. Apt, V. Marek,
M. Truszczynski, and D. S. Warren, Eds. Springer-Verlag, 1999.

[6] Apt, K. R., and Emden, M. H. Contributions to the theory of logic
programming. Journal of the ACM 29, 3 (July 1982), 841–862.

[7] Arts, T., and Zantema, H. Termination of logic programs us-
ing semantic unificition. In Proc. of the 5th Int. Workshop on Logic
Program Synthesis and Transformation (1995), vol. 1048 of LNCS,
Springer Verlag.

[8] Asperti, A., and Martini, S. Projections instead of variables, a
category theoretic interpretation of logic programs. In Proc. of 6th
ICLP (1989), MIT Press, pp. 337–352.

[9] Backus, J. From function level semantics to program transformations
and optimization. In Mathematical foundations of software develop-
ment, Vol. 1 (1985), Springer LNCS 185.

[10] Barr, M., and Wells, C. Category Theory for Computing Science.
Prentice Hall, 1995.

[11] Baudinet, M. Proving termination properties of Prolog programs: A
semantic approach. In Third Annual Symposium on Logic in Computer
Science (Edinburgh, 1988), IEEE Computer Society, pp. 336–347.

185



[12] Bekkers, Y., and Tarau, P. Monadic constructs for logic program-
ming. In Proceedings of ILPS’95 (Portland, USA, 1995), J. Lloyd, Ed.,
MIT Press, pp. 51–65.

[13] Bellia, M., and Levi, G. The relation between logic and functional
languages: a survey. Journal of Logic Programming 3, 3 (1986), 317–
236.

[14] Billaud, M. Simple operational and denotational semantics for pro-
log with cut. Theoretical Computer Science 71(2) (1988), 193–208.

[15] Bird, R. Algebraic identities for program calculation. Computer
Journal (1989).

[16] Bird, R. Functional algorithm design. Science of Computer Program-
ming 26 (1996), 15–31.

[17] Bird, R. Introduction to Functional Programming using Haskell.
Prentice Hall, 1998.

[18] Bird, R. S., and de Moor, O. Algebra of Programming. Prentice
Hall, 1997.

[19] Bosco, P. G., Giovanetti, E., and Moiso, C. Narrowing vs. sld-
resolution. Theoretical Computer Science, 59 (1988), 3–23.

[20] Bossi, A., and Cocco, N. Preserving universal termination through
unfold/fold. In Proc. of ALP’94 (Berlin, 1994), vol. 850, LNCS,
pp. 269–286.

[21] Bossi, A., Cocco, N., and Etalle, S. Transformation of left
terminating programs. In Proc. of LOPSTR’99 (Venezia, Italy, 1999),
LNCS 1817, pp. 156 – 175.

[22] Bruynooghe, M., De Raedt, L., and De Schreye, D. Ex-
planation based program transformation. In Proc. of the 11th Intl.
Conference on Artificial Intelligence (1989), pp. 407–412.

[23] Burstall, R. M., and Darlington, J. A transformation system
for developing recursive programs. Journal of the ACM 24, 1 (1977).

[24] Chen, W., Kifer, M., and Warren, D. S. HiLog: A foundation
for higher-order logic programming. Journal of Logic Programming
15, 3 (1993), 187–230.

[25] Claessen, K., and Ljunglöf, P. Typed logical variables in Haskell.
In Haskell Workshop (Montreal, Canada, 2000), Univeristy of Notting-
ham Technical Report.

186



[26] Clark, K. L. Negation as failure. In Logic and Data Bases, H. Gal-
laire and J. Minker, Eds. Plenum Press, 1978, pp. 293–322.

[27] Clark, K. L. Predicate logic as a computational formalism. Research
Monograph, Imperial College, Univ. of London, 1980.

[28] Clark, K. L., and Darlington, J. Algorithm classification
through synthesis. The Computer Journal 23, 1 (1980), 61–65.

[29] Clark, K. L., and Sickel, S. Predicate logic: a calculus for de-
riving programs. In Proc. of 5th Intl. Joint Conference on Artificial
Inteligence (Cambridge, Massachusetts, 1977).

[30] Clark, K. L., and Tärnlund, S.-A., Eds. Logic Programming.
No. 16 in A.P.I.C Studies in Data Processing. Academic Press, 1982.

[31] Clocksin, W. F. Logic-programming specification and execution of
dynamic-programming problems. Journal of Logic Programming 12,
4 (1990).

[32] Cormen, T. H., Leiserson, C. E., and Rivest, R. L. Introduction
to algorithms. McGraw-Hill, 1990.

[33] Corradini, A., and Asperti, A. A categorical model for logic
programs: Indexed monoidal categories. In Proc. of REX Workshop
(1992), Lecture Notes in Conputer Science, Springer.

[34] Corradini, A., and Montanari, U. An algebraic semantics for
structured transition systems and its application to logic programs.
Theoretical Computer Science 103 (1992), 51–106.

[35] Crole, R. L. Categories for Types. Cambridge University Press,
1993.

[36] Curtis, S. A Relational Approach to Optimization Problems. PhD
thesis, University of Oxford, 1995.

[37] Darlington, J. A synthesis of several sorting algorithms. Acta
Informatica 11, 1 (1978).

[38] Darlington, J., Field, A. J., and Pull, H. The unification
of functional and logic languages. In Logic Programming: Functions,
Relations and Equations, D. DeGroot and G. Lindstrom, Eds. Prentice
Hall, 1986, pp. 37–70.

[39] de Moor, O. Categories, relations and dynamic programming. PhD
thesis, Computing Laboratory, Oxford, 1992.

187



[40] de Moor, O., and Sittampalam, G. Generic program transforma-
tion. In Procs. 3rd International Summer School on Advanced Func-
tional Programming (1998).

[41] De Schreye, D., Martens, B., Sablon, G., and Bruynooghe,

M. Compiling bottom-up and mixed derivations into top-down exe-
cutable logic programs. Tech. rep., Katholieke Univ. Leuven, 1989.

[42] Debray, S. K., and Mishra, P. Denotational and operational se-
mantics for Prolog. Journal of Logic Programming 5 (1988).

[43] Diaconescu, R. Category Semantics for Equational and Constraint
Logic Programming. PhD thesis, Oxford University, 1994.

[44] Dromey, R. G. Derivation of sorting algorithms from a specification.
The Computer Journal 30 (1987), 512–518.

[45] Erkök, L., and Launchbury, J. Recursive monad bindings. ACM
Sigplan Notices 35, 9 (2000), 174–185.

[46] Etalle, S., and Mountjoy, J. The lazy functional side of logic pro-
gramming. In Proc. of the Int. Workshop on Logic Program Synthesis
and Transformation (2000).

[47] Felleisen, M. Transliterating Prolog into Scheme. Tech. Rep. 182,
Indiana University CS Department, 1985.

[48] Freyd, P. J., and A., S. Some semantic aspects of polymor-
phic lambda calculus. In Proc. of Logic in Computer Science (1987),
pp. 315–319.

[49] Fribourg, L. SLOG: A logic programming language interpreter
based on on clausal superposition and rewriting. In Proc. IEEE In-
ternat. Symposium on Logic Programming (1985).

[50] Friedman, D. P., Wand, M., and Haynes, C. T., Eds. Essentials
of Programming Languages. MIT Press, 1992.

[51] Ganzinger, H., and Waldmann, U. Termination proofs of well-
moded logic programs via conditional rewrite systems. In Proc. of the
3rd International Workshop on Conditional Term Rewriting Systems
(1993), vol. 656 of LNCS, pp. 430–437.

[52] Gegg-Harrison, T. S. Representing logic program schemata in
λ Prolog. In Proceedings of the 12th International Conference on Logic
Programming (June 1995).

188



[53] Goguen, J. A., and Meseguer, J. Models and equality for logical
programming. In Proceedings, TAPSOFT87 (1987), Springer LNCS
250.

[54] Green, C., and Barstow, D. On program synthesis knowledge.
Artificial Intelligence 10 (1987), 241–279.

[55] Hamfelt, A., and Nilsson, J. F. Declarative logic programming
with primitive recursive relations on lists. In Proc. of the Joint Inter-
national Conference and Symposium on Logic Programming (1996),
M. Maher, Ed., MIT Press, pp. 230–243.

[56] Hamfelt, A., and Nilsson, J. F. Towards a logic programming
methodology based on higher-order predicates. New Generation Com-
puting 15, 4 (1997), 421 – 448.

[57] Hamfelt, A., and Nilsson, J. F. Inductive synthesis of logic pro-
grams by composition of combinatory program scehmes. In Proc. 8th
International Workshop on Logic-based Program Synthesis and Trans-
formation (Manchester, United Kingdom, 1998), P. Flener, Ed.

[58] Hamfelt, A., Nilsson, J. F., and Vitoria, A. A combinatory
form of pure logic programs and its compositional semantics. submit-
ted for publication, 1998.

[59] Hanus, M. The integration of functions into logic programming:
From theory to practice. Journal of Logic Programming 19, 20 (1994),
583–628.

[60] Hanus, M., Kuchen, H., and Moreno-Navarro, J. J. Curry: A
truly functional logic language. In Proc. ILPS’95 Workshop on Visions
for the Future of Logic Programming (1995), pp. 95–107.

[61] Helman, P. The principle of optimality in the design of efficient
algorithms. Journal of Mathematical Analysis and Applications 119
(1986), 97–127.

[62] Henkin, L., Monk, J. D., and Tarski, A. Cylindric Algebras, Part
I. North-Holland, 1971.

[63] Hinze, R. Prological features in a functional setting - axioms and
implementations. In Proc. of FLOPS’98 (Fuji, 1998).

[64] Hoare, C. A. R. Communicating Sequential Processes. Prentice
Hall, 1985.

[65] Hoare, C. A. R., and He, J. Unifying Theories of Programming.
Prentice Hall, 1998.

189



[66] Hogger, C. J. Derivation of logic programs. Journal of the ACM
28, 2 (April 1981), 372–392.

[67] Hullot, J.-M. Canonical forms and unification. In Conference on
Automated Deduction (1980), pp. 318–334.

[68] Hussmann, H. Unification in conditional-equational theories. In Proc.
EURO-CAL’85 (1985), no. 204 in LNCS, Springer, pp. 543–553.

[69] J., L., and McGrail, R. Encapsulating data in logic programming
via categorical constraints. In Proc. of ALP’98, Principles of Declar-
ative Programming (1998), vol. 1490 of LNCS, Springer Verlag.

[70] Jones, N. D., and Mycroft, A. Stepwise development of opera-
tional and denotational semantics for Prolog. IEEE (1984).

[71] Krishna Rao, M. R. K., Kapur, D., and Shyamasundar, R. K.

A transformation methodology for proving termination of logic pro-
grams. In Proc. of the 5th Workshop on Computer Science Logic
(1991), Springer Verlag, pp. 213–226.

[72] Lambek, J., and Scott, P. J. Introduction to Higher Order Cate-
gorical Logic. Cambridge, 1986.

[73] Lau, K. K., and Prestwich, S. D. Synthesis of logic programs for
recursive sorting algorithm. Tech. rep., Dept. of Computer Science,
Univ. of Manchester, 1988.

[74] Launchbury, J., Lewis, J. R., and Cook, B. On embedding a
michroarchitectural design language within haskell. In ACM Sigplan
Int. Conf. on Functional Programming (1999), ACM Press, pp. 60–69.

[75] Lipton, J., Finkelstein, S. E., and Freyd, P. J. A new frame-
work for declarative programming: Categorial perspectives. In Proc.
of ELP (1996), pp. 209–211.

[76] Lloyd, J. W. Foundations of Logic Programming. Springer Verlag,
1993.

[77] Lloyd, J. W. Combining functional and logic programing lan-
guages. In Proc. Eleventh International Logic Programming Sympo-
sium (1994), M. Bruynooghe, Ed.

[78] Lloyd, J. W. Declarative programming in Escher. Tech. Rep. CSTR-
95-013, Department of Computer Science, University of Bristol, June
1995.

190



[79] Lloyd, J. W. Programming in an integrated functional and logic
language. The Journal of Functional and Logic Programming (1998).
to appear.

[80] Luttringhaus, S. An interpreter with lazy evaluation for PROLOG
with functions. In Proceedings of the 2nd Workshop on Computer
Science Logic (1989), Springer LNCS 385.

[81] Manes, E. G., and Arbib, M. A. Algebraic Approaches to Program
Semantics. Springer-Verlag, 1986.

[82] Marchiori, M. Logic programs as term rewriting systems. In Pro-
ceedings of the 4th International Conference on Algebraic and Logic
Programming (1994), vol. 850 of LNCS, pp. 223–241.

[83] Martelli, A., and Montanari, U. An efficient unification algo-
rithm. ACM Transactions on Programming Languages and Systems 4
(1982), 258–282.

[84] McGrail, R. Monads and Control in Logic Programming. PhD
thesis, Wesleyan UNiversity, 1997.

[85] McPhee, R. Compositional Logic Programming. PhD thesis, Oxford
University Computing Laboratory, 2001.

[86] McPhee, R., and de Moor, O. Compositional logic program-
ming. In Proceedings of the JICSLP’96 post-conference workshop:
Multi-paradigm logic programming (1996), Report 96-28, Technische
Universität Berlin.

[87] Meertens, L. Algorithmics — towards programming as a mathe-
matical activity. In Mathematics and Computer Science (1987), J. W.
De Bakker, M. Hazewinkel, and J. K. Lenstra, Eds., vol. 1 of CWI
Monographs, North-Holland, pp. 3–42.

[88] Moggi, E. Computational lambda-calculus and monads. In Sympo-
sium on Logic in Computer Science (June 1989), IEEE.

[89] Moggi, E. Notions of computations and monads. Infomation and
Computation 93 (1991).

[90] Moreno-Navarro, J., and Roderiguez-Artalejo, M. Logic pro-
gramming with functions and predicates: The language Babel. Journal
of Logic Programming 12, 3 (1992), 191–223.

[91] Moreno-Navarro, J. J., Kuchen, H., Loogen, R., and

Rodŕiguez-Artalejo, M. Lazy narrowing in a graph machine. In
Proc. Second International Conference on Algebraic and Logic Pro-
gramming (1990), LNCS 463, Springer, pp. 298–317.

191



[92] Narain, S. A technique for doing lazy evaluation in Prolog. Journal
of Logic Programming 3, 3 (1986).

[93] Nilsson, J. F., and Hamfelt, A. Constructing logic programs
with higher order predicates. In Proc. Joint Conference on Declarative
Programming (1995), pp. 307–312.

[94] O’Hearn, P. W., and Tennent, R. D. Parametricity and local
variables. Tech. rep., Syracuse University, 1993.

[95] Okasaki, C. Purely Functional Data Structures. Cambridge Univer-
sity Press, 1998.

[96] Ong, L. Non-determinism in functional programming. In Proc. of the
8th IEEE Symposium on Logic and Computer Science (1993).

[97] Panangaden, P., Sarawat, V., Scott, P. J., and Seely, R.

A. G. Lecture Notes in Computer Science, vol. 666. Springer, 1993,
ch. A Hyperdoctrinal View of Constraint Systems.

[98] Pettorossi, A., and Proietti, M. Transformation of logic pro-
grams: Foundations and techniques. ACM Computing surveys 19
(1994).

[99] Pettorossi, A., and Proietti, M. Handbook of Logic in Artificial
Intelligence and Logic Programming, vol. 5. Oxford University Press,
1998, ch. Transformation of Logic Programs, pp. 697–787.

[100] Pettorossi, A., and Proietti, M. Transformation rules for a
higher order logic programming language. Tech. Rep. R.525, IASI -
CNR, Roma, Italy, 2000.

[101] Pitt, D., Abramsky, S., Poigne, A., and Rydeheard, D., Eds.
Category Theory in Computer Science, vol. 240 of Lecture Notes in
Computer Science. Springer, 1985.

[102] Plotkin, G., and Reynolds, J. Logical Foundations of Functional
Programming. Addison-Wesley, 1990, ch. On Functors Expressible in
the Polymorphic Lambda Calculus.

[103] Power, J., and Kinoshita, Y. A new foundation for logic program-
ming. In Extensions of Logic Programming (1996), Springer, Ed.

[104] Proietti, M., and Pettorossi, A. Semantics preserving transfor-
mation rules for Prolog. In Proceedings of PEPM91 (1991), vol. 26 of
Sigplan Notices.

192



[105] Proietti, M., and Pettorossi, A. Program derivation via list
introduction. In Proceedings of IFIP TC2 Working Conference on
Algorithmic Languages and Calculi (Le bischenberg, France, 1997).

[106] Pym, D. Functorial kripke models of the λ-calculus. In Workshop on
Category Theory and Logic Programming (Cambridge, 1995). Lecture
at Newton Institute Semantics Programme.

[107] R., B. Dynamic Programming. Princeton University Press, 1957.

[108] Reddy, U. S. Transformation of logic programs into functional pro-
grams. In Proc. of ALP’90 (1984), pp. 187–196.

[109] Reddy, U. S. Narrowing as the operational semantics of functional
languages. In Symposium on Logic Programming (Boston, 1985),
IEEE.

[110] Reddy, U. S. Logic Languages based on Functions: Semantics
and Implementation. PhD thesis, University of Utah, 1986. Tech-
nical Report UIUCDCS-R-86-1305, University of Illinois at Urbana-
Champaign.

[111] Reddy, U. S. On the relationship between logic and functional lan-
guages. In Logic Programming: Functions, Relations and Equations.
Prentice Hall, 1986, pp. 3–36.

[112] Reddy, U. S. Functional logic languages part I. In Proceedings of a
Workshop on Graph Reduction (1987), Springer LNCS 279.

[113] Robinson, J. A. A machine-oriented logic based on the resolution
principle. Journal of the ACM 12, 1 (January 1965), 23–41.

[114] Robinson, J. A. Beyond LogLisp: combining functional and rela-
tional programming in a reduction setting. Machine intelligence 11
(1988), 57–68.

[115] Robinson, J. A. Memories of the past and challenges for the future.
In Computational Logic (2000), no. 1861 in LNCS, Springer, pp. 1–24.

[116] Robinson, J. A., and Sibert, E. E. LogLisp: An alternative to Pro-
log. Machine Intelligence 10 (1982), 399–419.

[117] Ross, B. J. Using algebraic semantics for proving Prolog termination
and transformation. Proceedings of the UKALP 1991 (1991).

[118] Rydeherad, D. E., and Burstall, R. M. Category Theory and
Computer Programming. Springer, 1985, ch. A Categorical Unification
Algorithm.

193



[119] Sagonas, K., Swift, T., and Warren, D. S. XSB as an efficient
deductive database engine. In Proc. of ACM SIGMOD Intl Conference
on the Management of Data (Minneapolis, Minnesota, May 1994),
pp. 442–453.

[120] Seres, S., and Mu, S. C. Optimisation problems in logic program-
ming: an algebraic approach. In Proceedings of LPSE’00 (London,
UK, 2000).

[121] Seres, S., and Spivey, J. M. Functional reading of logic programs.
Journal of Universal Computer Science (2000).

[122] Seres, S., and Spivey, J. M. Higher-order transformation of logic
programs. In Proceedings of LOPSTR’00 (London, UK, 2000).

[123] Seres, S., Spivey, J. M., and Hoare, C. A. R. Algrebra of logic
programming. In Proceedings of ICLP’99 (Las Cruces, USA, 1999).

[124] Sittampalam, G. Higher-order matching for program transforma-
tion. PhD thesis, University of Oxford, 2001.

[125] Slagle, J. R. Automated theorem-proving for theories with sim-
plifiers, commutativity and associativity. Journal of the ACM 21, 4
(1974), 622–642.

[126] Smith, D. R. The design of divide and conquer algorithms. Science
of Computer Programming 5 (1985), 37–58.

[127] Smith, D. R. Top-down synthesis of divide-and-conquer algorithms.
Artificial Intelligence 27, 1 (1985), 43–96.

[128] Smyth, M. B. Handbook of Logic in Computer Science. Oxford
University Press, 1990, ch. Topology.

[129] Somogyi, Z., Henderson, F. J., and Conway, T. The implemen-
tation of Mercury: an efficient purely declarative logic programming
language. In Proceedings of the Australian Computer Science Confer-
ence (Glenelg, Australia, February 1995), pp. 127–140. available at
http://www.cs.mu.oz.au/mercury/papers.html.

[130] Spivey, J. M. A functional theory of exceptions. Science of Computer
Programming 14, 1 (1990), 25–42.

[131] Spivey, J. M. An Introduction to Logic Programming through Prolog.
Prentice Hall, 1996.

[132] Spivey, J. M. Combinators for breadth-first search. Journal of Func-
tional Programming (2000). Accepted for publication.

194



[133] Spivey, J. M., and Seres, S. The algebra of searching. In Festschritf
in hounour of C.A.R. Hoare (1999).

[134] Spivey, J. M., and Seres, S. Embedding Prolog in Haskell. In
Proceedings of Haskell’99 (Paris, France, 1999).

[135] Stuckey, P. Embedding constraint programming in Haskell. Private
communication., 2000.

[136] Subrahmanyam, P. A., and You, J.-H. Logic Programming, Func-
tions, Relations and Equations. Prentice Hall, 1986, ch. FUNLOG: a
Computational Model Integrating Logic Programming and Functional
Programming, pp. 157–198.

[137] Todoran, E., and Papaspyrou, N. Continuations for parallel logic
programming. In Principles and Practice of Declarative Programming
(Montreal, Canada, 2000).

[138] van Emden, M. H., and Kowalski, R. A. The semantics of pred-
icate logic as a programming language. Journal of the ACM 23, 4
(October 1976), 722–742.

[139] van Raamsdonk, F. Translating logic programs into conditional
rewriting systems. In Proc. of the 14th International Conference on
Logic Programming (1997), MIT Press, pp. 168–182.

[140] Villemonte de la Clergerie, E. A tool for abstract interpreta-
tion: Dynamic programming. In Proc. of JTASPEFL (1991).

[141] Wadler, P. How to replace failure by a list of successes. In 2’nd
International Conference on Functional Programming Languages and
Computer Architecture (Nancy, France, September 1985), Springer-
Verlag.

[142] Wadler, P. Deforestation: Transforming programs to eliminate
trees. Theoretical Computer Science (1990).

[143] Wadler, P. Comprehending monads. Mathematical Structures in
Computer Science 2 (1992), 461–493.

[144] Wadler, P. The essence of functional programming. In 19’th Annual
Symposium on Principles of Programming Languages (January 1992).

[145] Wadler, P. Monads for functional programming. In Advanced Func-
tional Programming. Springer LNCS 925, 1995.

[146] Wand, M. Continuation-based program transformation strategies.
Journal of the ACM 27, 1 (1980).

195



[147] Wand, M. A semantic algebra for logic programming. Tech. Rep.
148, Indiana University, 1983.

[148] Zhou, N.-F. Beta-prolog: An exted prolog with boolean tables for
combinatorial search. In Proc. 5th IEEE Intl Conference on Tools with
Artificial Intelligence (November 1993), pp. 312–319.

196


