The Algebra of Searching

Mike Spivey and Silvija Seres
December 1999

1 Introduction

What is the logic of Prolog? The usual answer is that it is Horn-clause logic, but
this answer does justice only to the ‘declarative’ reading of programs, and ignores
the implicit control information that is contained in a ‘procedural’ reading.
Whilst we may regard two logical specifications as equivalent if they have the
same meaning in Horn-clause logic, it is certainly true that logically equivalent
programs can have very different operational behaviours. In this paper, we seek
to develop a logic for logic programs that takes into account this procedural
aspect of their behaviour under different search strategies, emphasizing algebraic
properties that are common to all search strategies.

It is perhaps unsurprising that the concept of the search tree of a program
gives a universal search strategy, in the sense that any other search strategy can
be simulated by building the search tree, then traversing it in an appropriate
way. What is perhaps more surprising is that it is possible to present this
property of search trees in the language of category theory by forming a category
in which the objects are search strategies, the morphisms recover the output of
one strategy from the output of another, and search trees are an initial object.

In this paper, we address only the facet of logic programming that has to do
with search, and ignore the facet that contains ‘logical variables’ and unification.
We have written elsewhere [2, 4] about this other facet, and how the two may be
combined to make a ‘shallow embedding’, a set of combinators that allow any
(pure) Prolog program to be rewritten succinctly as a lazy functional program,
in a way that is independent of the search strategy used.

We begin with the familiar idea of implementing depth-first search using
lists of successes, then show how the same structure can support combinators
that produce first search trees and then breadth-first search. All these search
strategies are presented in a compositional way, so that logic programs can be
composed semantically, with combinators A and V that act on the meanings of
programs, not just on pieces of abstract syntax; this is the main advantage of
our shallow embedding of Prolog in lazy functional programming over a ‘deep
embedding’, i.e., an interpreter that treats logic programs as syntactic objects.

2 Depth-first search

The use of ‘lists of successes’ to model backtracking search was suggested by
Wadler [5] and has become part of the folklore of functional programming. As
a reminder, a relation that takes an argument of type a and may return several
results of type B — or none — is represented by a function of type a — Stream (3,
where Stream (3 is the type of lazy streams over 3.} Following Richard Bird [1],
if f::a — 0, we write fx :: List « — List 3 for the corresponding mapping
function on lists.

Given two relations of the same type, we can form their disjunction by
concatenating the streams of answers they return, defining an operator V by

(pVagr=pr+Hqu
This operation is associative, and has a unit element false, defined by
false © = [].

As in Prolog, the answers from p precede those from ¢, so that if p returns an
infinite stream of answers, or if p diverges, then no answers from g will be seen
in the output.

As well as the disjunction of two relations, we may also form their conjunc-
tion. More precisely, if p :: a — Stream 8 and q :: f — Stream ~ are two
relations, then there is a relation p A g :: @ — Stream -y, defined by

p A\ q = concat - gx - p.

The operation A also has a unit element true, defined by true z = [z].
Readers who know some category theory will immediately recognise our
operation A as the composition operator of the Kleisli category for the monad,

(Stream, H-, true),

in which true is the unit. Given this observation, standard arguments show that
the A operation is associative and has true as its unit element.

The signs and names we have used for our operations suggest that they
should have further algebraic properties. Indeed, we find that false, the unit
element for V, is a zero element on the left for A, in the sense that (false A p) =
false for any relation p. But we will be disappointed if we push this analogy too
far, for false is not a right zero for A: if the relation p diverges or returns an
infinite stream of answers, then the relation p A false itself diverges. Likewise,
though it is easy to show that A distributes over V from the right, we find that
it does not do so from the left. This behaviour reflects what we find in Prolog,
for if #(X) is the predicate that is satisfied when X = 1 or X = 2, then for

r(X)A(Y =5VY =6)

In this paper, we shall later want to make a clear distinction between potentially infinite,
lazy streams and strictly finite lists, so we distinguish the two types Stream « and List
though both have the same representation in a lazy functional programming language.

we obtain the four answers (X =1,Y =5), (X =1,Y =6), (X =2,V =5),
(X = 2,Y =6), in that order, while for

rX)AY =5)Vv (r(X)AY =6),

the second and third answers come in the opposite order. In this finite example,
the order and multiplicity of the solutions may be of small importance. With
larger examples however, and particularly those involving recursion, it can make
the difference between a program that returns an infinite stream of answers and
one that returns no answers at all, because the depth-first search has become
stuck in an infinite but fruitless branch of the program.

We can deal with the bi-directional character of Prolog programs by making
both the input and output of our relation be an answer, that is, essentially
a substitution. The input answer represents what is known about the values
of logical variables before the relation is considered, and the output answer
contains also the additional information contributed by the relation itself, if
this information is consistent with the input. In our embedding of Prolog in a
lazy functional language, a predicate such as append has type

append :: Term x Term x Term — Answer — Stream Answer,

so that if x, y and z are terms, then append (z,y, z) is a relation mapping
input answers (which may give values to some of the variables in z, y and z) to
multiple output answers, which may give values to more of those variables. For
details see [4] and [2].

3 Search trees

Search strategies for logic programs are often described in terms of the search
tree of the program, a tree in which the outcomes of each step of computation
are shown as the children of that step. In order to deliver the results of a relation
as a tree, we must introduce into our model the idea of a step of computation.
One possibility would be to incorporate it as part of the V operation, so that
a step was equated with a choice between alternatives. We prefer to introduce
a separate operation, so that it is possible that a single step of computation
achieves a choice from among many possibilities, or indeed involves no choice at
all, perhaps just the unfolding of a definition. For depth-first search, the idea
of computation steps is irrelevant, so in that model, the new operation can be
implemented as the identity function.

The search trees we shall use are finitary rose trees — that is, trees in which
each node has a finite list of children. The type of such trees is defined by

data Tree a = Tip a | Fork (Forest),
where the type Forest a is defined by

type Forest « = List (Tree &),

with List a being the type of finite lists over a. Actually, we shall take the
result of a logic program to be a forest, not a single tree, because that will allow
us to define an associative disjunction operator easily. We use the notation f
for the mapping operator that turns a function f :: a@ — [into a function
f1 :: Forest ao — Forest (3.

The analogue of the function concat that we used to define conjunction in
the depth-first model is the function

graft :: Forest(Forest) — Forest a

defined by the following equations:

graft [] =[]
graft [Tip of] = of
graft [Fork zff] [Fork (graft zff)]
graft (of + yf) = graft of + graft yf
(This kind of definition of a function on lists has a pleasing symmetry that
is lost by the usual nil/cons form of definition. The function is well-defined
provided that the right-hand sides describe a monoid in the appropriate way.)

This polymorphic function is the multiplication of a monad, and the unit is the
function twig :: o — Forest o defined by

twig x = [Tip z].

The analogues of the operation + on streams (used to define the V com-
binator) and the constant [] (used to define false) are concatenation of (finite)
forests and the empty forest; again these form a monoid. Finally, a step of com-
putation is modelled by applying the function branch :: Forest « — Forest o
defined by

branch zf = [Fork zf].

This function wraps up its argument, a forest, as a single tree, pushing every-
thing down one level.

Following the programme that we used with depth-first search, we can now
define logical connectives A, V, true, false that operate on relations of type
a — Forest 3, and a function step such that step p is a relation that computes
the same answers as p, but with a computation cost that is one unit greater
than that of p. The definitions are as follows:

pAqg = groft-qi-p
PVoz = prtqz
truex = twigz
falsex =]
stepp = branch - p.

Our family of operations graft, H, twig, [], branch gives the framework for a
compositional interpretation of these logical connectives. By a compositional

interpretation, we mean one where both p A ¢ and p V ¢ have a meaning that is
a function of the meanings of p and gq.

4 The category of strategies

We now have two models of search that are defined along the same lines, so we
may ask what is the relationship between them. Category theory provides the
language in which to answer this question; given an appropriate definition of
morphisms between different families of operations, we can form a category of
search strategies, and we shall find that search trees form an initial object in
this category.

Let us use the term semi-distributive monad (SDM) for a type constructor
and collection of polymorphic combinators that form a search strategy. Specifi-
cally, an SDM is a tuple (T, join, ®, unit, zero, wrap), where T is a functor (type
constructor) with associated mapping operator >, and the other elements are
natural transformations (polymorphic functions) with the following types:

join = T(Ta) =T«
@ = TaxTa—-Ta

unit = a > T«
zero = T«
wrap = Ta—Ta.

Any SDM must satisfy certain algebraic laws:
e (T, join, unit) is a monad,
e (T a, ®, zero) is a monoid for each type a, and

e the following ‘one-sided distributive laws’ hold:

join (zt ® yt) = join xt @ join yt (1)
join zero = zero (2)
join - wrap = wrap - join. (3)

These last three laws translate into algebraic properties of our higher-level con-
nectives:

(pvgAr = (pAT)V(gAT)
false Np = false
step (pAq) = (stepp) Aq

The last of these seems to express the fact that the first step in solving p A ¢q is
devoted to the solution of p.
We can also define the notion of a morphism of search strategies. A morphism

h 2 (T, join, ®, unit, zero, wrap) — (T, join', ®', unit’, zero', wrap")

is a natural transformation h :: T o — T' « that respects the other components
of the SDM. Specifically,

h-join = join' - (h % h)
h(z®y) = hxzd hy
h-unit = unit'
hzero = zero'
h-wrap = wrap' - h.

(We use the notation h x h = h - h> = h>' - h for the horizontal composition of
h with itself.)

These definitions make semi-distributive monads into a category, with both
our examples of search strategies as objects. It turns out that the tree-based
strategy is an initial object in this category. Given any SDM

(T, join, ®, unit, zero, wrap),
we can define a morphism
h :: (Forest, graft, H, twig, [], branch) — (T, join, ®, unit, zero, wrap)

by the recursive equations,

h[] = zero
h(Tipz] = wunitx
h[Fork zf] = wrap (hzf)
h(zf + yf) = haf @ hyf.

We need to make several observations about this definition. The first is that
the function h is well-defined by the equations, because & is associative with
unit unit. As in the definition of graft, the right-hand sides describe a monoid,
since T is an SDM, and this makes it immaterial what decomposition we take
of the argument of h. For reasons of symmetry, we prefer this style of definition
to the usual style in terms of nil and cons.

Second, the four equations given are just a translation into concrete terms
of four of the five conditions for h to be a morphism of SDM’s; for example, the
condition h- wrap = wrap’ - h becomes h [Fork zf] = wrap zf when we make the
appropriate substitutions wrap of = [Fork zf] and wrap’ = wrap. This means
that if there is any morphism between these SDM’s, then it must be equal to h,
the function uniquely defined by these equations.

Third, A is in fact a morphism, because it satisfies the fifth condition,

h - graft = join - (h % h).

This may be proved by induction.

5 Breadth-first search

If depth-first search and search based on trees form two objects in the category
of semi-distributive monads, can breadth-first search be put in the same picture,
S0 as to get a compositional formulation of breadth-first search also? The answer
is yes, but there are some difficulties to be overcome.

The basic idea is to enumerate the solutions in a search tree level-by-level, so
as to get a potentially infinite stream, each element of which is a finite collection
of solutions. It’s tempting to say that each level is a finite list, but as we shall
see, it is impossible to model breadth-first search in a compositional way if we
insist on knowing the order of the solutions in each level; so instead, we shall
say that each level will be a finite bag of solutions. We’ll use the term matriz
for a lazy stream of bags:

type Matriz o = Stream(Bag «).

We’ll use ¢ for the mapping operator on bags, U for the binary union operator on
bags, and union :: Bag(Bag o) — Bag « for the function that gathers together
all elements of a bag of bags.

We will now model relations as functions in a — Matriz 5. It’s easy to see
that total failure corresponds to the matrix that has the empty bag [] in every
level, and a computation that immediately returns the single answer x should
have [z] as its first level and [] ever after:

fail = repeat []
succeed x = [z] : repeat []
These will become the zero and unit elements of our SDM.>

Given two matrices of the same type, we can combine them level-by-level
with the binary union operator:

xm W ym = zipWith (U) zm ym.

This operation is associative, has fail as its unit, and provides an appropriate
disjunction operator for our SDM. Again, we can take a matrix and move each
level down by one, adding an empty level at the start:

delay xm =[] : zm.

This gives an appropriate wrap operation, delaying all answers by one unit of
time.

The operations we have defined so far are all that we need to define a function
bfs from forests to matrices that shows how to search a forest breadth-first:

bfs[] = repeat[]
bfs [Tip z] = [z]: repeat []
bfs [Fork zf] = 1[]: bfsaf

]
bfs (zf + yf) = zipWith (U) (bfs zf) (bfs yf)
2By small changes to these definitions and those that follow, we could make a version of

our model in which searches terminate if the underlying search tree is finite. For simplicity,
we refrain from doing this.

The final ingredient is a vital one in a compositional treatment of breadth-
first search; so far, we can explain breadth-first search only by saying “first
form search tree of the program, then search it using the function bfs.” We
want instead to define a way of composing relations directly when they are
modelled by functions that return a matrix. It is here that the decision to use
a bag for each level of the matrix becomes important.

The problem is as follows: we have two relations p :: @ — Matriz 8 and
q :: B — Matriz v, and we wish to form their conjunction, a relation of type
a — Matriz v. Following the pattern established earlier, we wish to define

P A\ q = join - qox - p,

for some suitable function join : Matriz (Matriz o) — Matriz «.

Since Matriz a = Stream(Bag «), and Strearn and Bag are both monads, it
is very tempting to think that we ought to use a distributive law of one monad
over the other, like this:

SBSBa trans* SSBBa UNLON ** SSBa concat SBCM,

where trans :: Bag(Stream «) — Stream(Bag «) is the obvious transposition
function. But that would not be the right thing at all! Once we have rearranged
things with trans, we have a stream of streams; successive elements of the outer
stream correspond to increasing computation cost devoted to solving p, and
successive elements in each inner stream correspond to increasing cost of solving
q- We do not want to arrange these in lexicographic order of increasing cost for
p and within that, increasing cost for ¢. Instead, we would like to arrange the
solutions in order of increasing total cost. We can do this using a function

diag :: Stream(Stream) — Stream(Bag)

that arises in Cantor’s famous proof that the set of pairs of natural numbers
N x N (under the guise of the rationals Q) is countable. This function takes a
two-dimensional infinite array and slices it into diagonals, making each diagonal
into a bag, thus:

diag [[3500, o1, L025 - - -], [3510, T11, L12, - - -], [5620, .. -], .-]

= [[zool, [zo1, T10], [T02, T11, T20], - -]
Using this function, we define join as follows:
join = (union - union)* - diag - transx.

In outline:

diag

SBSBa —"*"* . SSBBa —%% y SBBBa

(union-union)x*
E—

SBa.

The proof that, together with the other functions we have defined, join satisfies
the laws of an SDM is mostly straightforward, apart from the proof that join is
associative, that is,

join - join = join - joinox.

This proof relies on a small theory of trans, diag and their interaction that we
have no space to present here, but have written about elsewhere [3].

This question of associativity bears also on the question why we insist on
using bags instead of lists. It is easiest to explain this in terms of the matrix
returned by a conjunction of three predicates p A ¢ A r. The n’th level in this
matrix enumerates all the solutions with total cost n, and can be imagined as
the equilateral triangular region { (z,y, 2) | £+ y + z = n } in positive 3-space,
where the three coordinate axes correspond to the costs of solving p, ¢ and r.
In a model based on lists, if the conjunction were bracketed as p A (g A 1),
the solutions would be enumerated in order of decreasing x, and within that,
decreasing y. Bracketed the other way, the formula would call for the answers
in order of increasing z, and within that, increasing y — and these two orders
are not the same. By moving from lists to bags, we avoid this problem.

Returning to the link with Cantor’s proof, we are asking the question, “How
many essentially different proofs are there that A" x N x A is countable?” Our
answer is that there is just one, once we have removed the parts of Cantor’s
construction that are purely accidental.

6 Summary and conclusions

By identifying the SDM of search trees as an initial object in this category, we
have shown that all interpretations of Prolog programs that are (in our sense)
compositional consist of traversing the search tree of the program in one way
or another. To look at it another way, we have established a set of algebraic
laws that are common to all compositional interpretations; these are exactly
the laws that are satisfied by the SDM of search trees. Thus we have identified
exactly the laws that are valid regardless of the search strategy, and can be used
for transforming logic programs without commitment to a particular execution
mechanism.

This is (we hope) one small step towards a treatment of logic programming
that reconciles the procedural and declarative readings of programs by providing
a single algebraic framework that subsumes both of them.

References

[1] R. S. Bird, Introduction to the theory of lists, in Logics of Programming
and Calculi of Discrete Design (M. Broy, ed.), Springer-Verlag, 1987.

[2] S. Seres, J. M. Spivey and C. A. R. Hoare, ‘Algebra of logic programming’,
in Proceedings of the 1999 International Conference on Logic Programming
(D. De Schreye, ed.), MIT Press, 1999.

[3] J. M. Spivey, ‘The monad of breadth-first search’, submitted to Journal of
Functional Programming.

[4] J. M. Spivey and S. Seres, ‘Embedding Prolog in Haskell’, in Proceedings of
Haskell’99 (E. Meier, ed.), Technical Report UU-CS-1999-28, Department
of Computer Science, University of Utrecht.

[5] P. L. Wadler, ‘How to replace failure by a list of successes’, in Functional
Programming Languages and Computer Architecture, (J.-P. Jouannaud,
ed.), LNCS 201, Springer-Verlag, 1985.

10

